
20Water Quality20StudyMonroe County
Pennsylvania

The Monroe County Planning Commission and the Monroe County Conservation District

1 Quaker Plaza, Room 106 Stroudsburg, PA 18360-2169 (570) 517-3100 Fax (570) 517 3858 www.monroecountypa.gov

8050 Running Valley Road, Stroudsburg, PA 18360-2169 (570)629-3060 www.mcconservation.org

Table of Contents

Materials and Methods1	
Field Chemistry Sampling1	
Laboratory Chemistry Sampling1	
Macroinvertebrate Sampling2	
Habitat Analysis2	
Appendix A – Surface Water Parameters3	
Field Measurements	
Field Measurement Data Form4	•
Water Chemistry Laboratory Analysis5	•
Appendix B – Benthic Macroinvertebrates7	,
Macroinvertebrate Analysis	
Wadeable Freestone Riffle-Run Stream8	,
Wadeable Multihabitat Stream13	
Macroinvertebrate Collection Data16	,
Appendix C – Habitat Assessment	•
Riffle/Run Parameters25	•
Riffle/Run Habitat Evaluation Form26	,
Low Gradient Parameters	
Multihabitat, Low Gradient Evaluation Form29)
Appendix D – Site Map	
Appendix E – Site List	
Data Pages	,
Conclusion75	•
Recommendations	
References)

PREPARED BY MONROE COUNTY

Board of Commissioners

Sharon S. Laverdure, Chairman John R. Moyer, Vice-Chairman John D. Christy, Commissioner Greg Christine, Chief Clerk/Administrator John B. Dunn, Solicitor

Monroe County Planning Commission Board

Rich Schlameuss, Chairman Annette Atkinson Brian Barrett Charles Vogt Meg Dilger Dr. Pat Kennedy Robert Baxter Sharon Solt

Monroe County Planning Commission Staff

Christine Meinhart-Fritz, Director Eric Koopman, Lead Senior Planner Nathaniel Staruch, Infrastructure Planner Fallon Horan, Open Space Coordinator Ryan Hill, Environmental Planner Kim Borger, Planner/E911 Addressing Coordinator Lee Schuler, Vector Control Coordinator

PROJECT PARTICIPANTS

Lead Agencies

Monroe County Planning Commission (MCPC) Program Director: Christine Meinhart-Fritz Program Coordinator: Ryan Hill Vector Control Program Coordinator: Lee Schuler

Monroe County Conservation District (MCCD) District Manager: Kristina Heaney Head Resource Conservationist: Lori Kerrigan Watershed Specialist: Andrea Polkowski Resource Conservationist: Steven Baade Environmental Educator: Brittany Coleman

Cooperating Agencies

Pennsylvania Department of Environmental Protection (PADEP) United States Environmental Protection Agency (EPA) Brodhead Watershed Association (BWA)

Entomology Consultants

Donald Baylor and Ken Ersbak Aquatic Resource Consulting (ARC) 944 Route 715 Saylorsburg, PA 18353

Professional Laboratory Consultant

Microbac Laboratories 1620 North Main Avenue Scranton, PA 18058

Materials and Methods

Field Chemistry Sampling

Field chemistry sampling was conducted using a hand-held YSI Professional Digital Sampling System (ProDSS) multiparameter water quality meter. The following parameters were collected and recorded on standard data forms at each sampling location:

- Potential of Hydrogen (pH)
- Temperature (°C)
- Dissolved Oxygen (D.O.) Concentration (mg/L)
- D.O. (%)
- Conductivity (μS/cm)

Laboratory Chemistry Sampling

Chemical sampling was conducted using sampling bottles and directives by Microbac Laboratories. The samples were transported on ice to their facilities via courier at the end of each sampling day. The following table shows the parameters that were collected and analyzed for each sampling location:

Test	Units	Method	Reporting Limit (RL)
Nitrate Calculated	mg/L	EPA 353.2, Rv. 2 (1993)	0.0500
Biochemical Oxygen Demand (BOD5)	mg/L	SM 5210 B-2011	3.00
Hardness (as CaCO ₃)	mg/L	Calculation by ICP	0.999
Aluminum	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.160
Calcium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Iron	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.0800
Magnesium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Chloride	mg/L	EPA 300.0, Rv. 2.1 (1993)	0.50
Alkalinity, Total to CaCO ₃ to pH 4.5	mg CaCO₃/L	SM 2310 B-2011	6.0
Total Dissolved Solids (TDS)	mg/L	SM 2540 C-2011	10.0
рН	N/A	SM 4500-H+ B-2011	1.0
Ammonia as N	mg/L	SM 4500-NH3 F-2011	0.30
Total Kjeldahl Nitrogen (TKN)	mg/L	SM 4500-NH3 F-2011	1.25
Phosphorus, Total as P	mg/L	SM 4500-P E-2011	0.020
Total Organic Carbon (TOC)	mg/L	SM 5310 C-2011	0.50

Table 1: Chemical testing parameters by Microbac Laboratories

Macroinvertebrate Sampling

The collection of macroinvertebrates began with delineating a 100-meter reach of each sampling location that best represented the habitat of the stream. Collection would be distributed throughout the 100-meter reach and would represent the variety of habitats shown in the bullet points below. In each case, macroinvertebrates were collected using a 12" 500-micron D-frame net that was held downstream from the substrate disturbance. The collection would be moved upstream along the 100-meter reach to limit disturbance of the study area. Six one-minute kicks were used in each of the riffle/run habitats and ten jabs or kicks were used in the multi-habitat locations (Shull & Lookenbill, 2018).

Riffle/Run Habitat - Six Samples

- Fast/Shallow
- Fast/Deep
- Slow/Shallow
- Slow/Deep

Multi-Habitat Collection – Ten Samples

- Cobble/Gravel
- Snag
- Coarse Particulate Organic Matter (CPOM)
- Submerged Aquatic Vegetation (SAV)
- Sand/Fine Sediment

Each sample was placed in a round wide-mouth plastic jar containing 95% ethanol and delivered to Aquatic Resource Consulting for macroinvertebrate identification and analysis.

Habitat Analysis

Each sampling location was assessed as riffle/run or low gradient streams depending on the habitat. Each parameter was rated on a score from 1-20; 20 being the highest score possible (Shull & Lookenbill, 2018).

Riffle/Run Streams

Instream Cover Epifaunal Substrate Embeddedness Velocity/Depth Regimes Channel Alteration Sediment Deposition Riffle Frequency Channel Flow Status Condition of Banks Bank Vegetative Protection Grazing or Other Disruptive Pressure Riparian Vegetative Zone

Low Gradient Streams

Epifaunal Substrate/Available Cover Pool Substrate Characterization Pool Variability Sediment Deposition Channel Flow Status Channel Alteration Condition of Banks Bank Vegetative Protection Riparian Vegetative Zone

Appendix A – Surface Water Parameters

Field Measurements

Potential of Hydrogen (pH)

pH is an expression of the hydrogen ion concentration in water. The pH scale is used to determine the acidity or basicity of a solution on a scale of 0 to 14, with pH 7 being neutral. When the pH of a solution is below 7, the solution is acidic. If the pH of a solution is above 7, the solution is basic. pH impacts most chemical and biological processes in water and different species flourish within different ranges of pH. Most aquatic organisms have an optimal pH range between 6.5 - 8. Slight changes in pH can shift community composition in streams. This is because pH alters the chemical state of many pollutants, changing their solubility, transport, and bioavailability. This can increase the exposure to and toxicity of metals and nutrients to aquatic organisms (EPA, 2018).

Temperature

Water temperature is influenced by many atmospheric and hydrologic processes and plays a fundamental role in shaping the structure and function of aquatic systems. Even a slight temperature change can affect aquatic organism survival, growth, reproduction, and development. The temperature of the stream is also used as the basis for classifying streams. (EPA, 2018)

Dissolved Oxygen (DO)

Dissolved oxygen refers to the concentration of oxygen gas incorporated in water. It enters the water through direct absorption from the atmosphere and is enhanced by turbulence. Sufficient DO is essential to the growth and reproduction of aerobic aquatic life. Sources from non-point or point source runoff, impoundments, treatment outfalls, and removal of riparian vegetation can impact the DO of a water body (EPA, 2018). In 25 Pa Code Chapter 93.7, the current DO criteria for flowing waters is: CWF; For flowing waters, 7-day average 6.0 mg/L; minimum 5.0 mg/L. WWF; 7-day average 5.5 mg/L; minimum 5.0 mg/L. TSF; For the period February 15 to July 31 of any year, 7-day average 6.0 mg/L; minimum 5.0 mg/L. For the remainder of the year, 7-day average 5.5 mg/L; minimum 5.0 mg/L.

Specific Conductance

Conductivity is a measure of water's ability to pass an electrical current and is used as a general measure of water quality. Dissolved salts and other inorganic compounds conduct electrical currents so as salinity in a water body increases, conductivity increases. Significant changes in the conductivity could be an indicator of a discharge or other source of pollution that is influencing the aquatic system (EPA, 2016). The conductivity in the United States can range from 50 to 1500 μ S/cm, but inland freshwater streams supporting mixed fisheries generally range from 150 to 500 μ S/cm (EPA, 2012).

Field Measurement Data Form

		S	ite Information			
Streem ID				Date		
Stream ID				Time		
Stream Name				Air Temp		
Latitude DMS				Weather	2	
Longitude DMS				Studied by		
			Field Chemistry			
Make sure there is complete mixing (similary readings across the stream)	pН		lved Oxygen		ductance	Temp (°C)
		%DO	mg/L DO	(μS/cm)	TDS (mg/L)	
Right Bank						
Thalweg						
Left Bank						
			12* diameter D-Frame net)	mpling		
and the second secon	Multihabitat (10 samples)				in (6 Samples)	
Multihabitat (10 samples	2	-			
Multihabitat (Choose 10 sites based on in stream abundance	(10 samples Target	Talley	At least 1 of each flow regimes	Talley	Comments:	
Choose 10 sites based on in stream abundance		-		Talley	Comments:	
Choose 10 sites based on in stream abundance Cobble/Gravel		-	regimes	Talley	Comments:	
Choose 10 sites based on in stream abundance Cobble/Gravel		-	regimes slow/shallow	Talley	Comments:	
Choose 10 sites based on in stream abundance Cobble/Gravel Snag CPOM		-	regimes slow/shallow fast/shallow	Talley	Comments:	
Choose 10 sites based on		-	regimes slow/shallow fast/shallow slow/deep	Talley 6	Comments:	

Water Chemistry Laboratory Analysis

Nitrogen

Nitrogen can be found in several types of species throughout the natural environment. Through nitrification and denitrification, bacteria can convert nitrogen which can increase or decrease the availability of this essential limiting nutrient in a system. Nitrification is when bacteria transform ammonia (NH₃) into nitrite (NO₂⁻) and then to nitrate (NO₃⁻), and denitrification is when bacteria convert nitrate to nitrite and then nitrogen gas. Additionally, ammonia can be transformed from ammonium in low oxygen environments. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms. Sources such as fertilizer, effluent from treatment plants, urban stormwater runoff, and livestock waste can all contribute to an influx of nitrogen into a system (EPA, 2006). Early laboratory studies demonstrated that the lethal concentrations for a variety of fish range between 0.2 to 2.0 mg/L NH₃ with trout being the most sensitive species (EPA, 1976).

Biological Oxygen Demand (BOD)

BOD measures how much oxygen is consumed while microorganisms decompose organic matter. This directly affects the amount of dissolved oxygen available. The higher the BOD, the more rapidly oxygen is consumed. Sources of BOD can include leafy debris, dead organisms, effluent from wastewater treatment plants, urban stormwater runoff, and feedlots. Generally, unpolluted natural waters have <5 mg/L BOD levels (EPA, 2006).

Total Hardness

Water hardness is caused by metallic ions, primarily calcium and magnesium, dissolving in water. Other metals such as iron, strontium, and manganese can also contribute to the hardness. Natural contributors to water hardness include dissolved limestone however, inorganic chemical industries and abandoned mines can also contribute to increased water hardness (EPA, 1986). According to the USGS Water Science School (n.d.), the general classification of waters are:

Soft Water	0 - 60 mg/L
Moderately Hard Water	60 - 120 mg/L
Hard Water	120 - 180 mg/L
Very Hard Water	180 mg/L and up

Aluminum

Aluminum is a natural element found in rocks and soils that can enter the water through natural processes. It can also be released by activities like mining and industrial processes that use aluminum. Elevated levels of aluminum in surface water can affect aquatic organism's ability to regulate ions and inhibit respiratory function. According to 25 Pa Code Chapter 93.8c, the water quality criteria for toxic substances maximum concentration is 750 µg/L. According to the *Final Aquatic Life Ambient Water Quality Criteria for Aluminum*, the concentration varied as a function of the site's pH, DOC, and total hardness but ranged between 1-4,800 µg/L (EPA, 2018).

Calcium

Calcium is a naturally occurring element in water bodies due to its abundance in the earth's crust. It enters waterways through the erosion process of sedimentary rocks such as limestone. It is a contributor to water hardness and can influence pH because of its buffering quality. Rivers generally contain 1-2 mg/L calcium. In limestone areas, rivers may contain calcium concentrations as high as 100 mg/L (Lenntech, 2020).

Total Kjeldahl Nitrogen

T.K.N is the sum of free-ammonia and organic nitrogen compounds. Samples in the field are preserved by the addition of Sulfuric Acid (H_2SO_4) (EPA, 1993).

Iron

Iron is the fourth most commonly found element in the earth's crust which enters waterbodies in varying quantities depending on the surrounding geological formations and hydrological processes. In the aquatic environment, there are two types of iron of most concern ferrous (Fe²⁺) and ferric (Fe³⁺), although other forms can be found. Ferrous iron can originate from mining operations and inorganic wastewater and can persist in anaerobic conditions. Ferric iron is highly insoluble and can originate from industrial wastes or mine drainage (EPA, 1976).

Magnesium

Magnesium is the eighth-most abundant element found in the earth's crust and is frequently used in manufacturing, fertilizer, and animal feed. Along with calcium, it contributes to the hardness and salinity of water bodies (USGS, 2001).

Chloride

Chlorides are salts resulting from the combination of the gas chlorine with a metal. The major anthropogenic sources of chloride are deicing salts, urban and agricultural runoff, and effluent from wastewater plants (EPA, 1988). The EPA's maximum criteria for chloride is 250 mg/L (25 Pa. Code § 93.7).

Total Organic Carbon (TOC)

TOC is the measure of the total amount of carbon in organic compounds in a water sample (Whitehead, 2020). This measurement is important to characterize the amount of oxygen being used by microorganisms thereby depleting the oxygen availability of other aquatic organisms. The samples collected in the field were preserved by the addition of 1 mL of sulfuric acid (H₂SO₄).

Total Alkalinity

Alkalinity is the measure of the capacity of water to neutralize acids. Alkaline compounds do this by combining with hydrogen ions to increase the pH of the solution. Alkalinity is influenced by geologic formations, salts, plant activity, and wastewater effluent. The ability for water to resist drastic pH change is crucial to the survival of aquatic life (EPA, 2006). The minimum criteria from EPA for alkalinity is a minimum of 20 mg/L as CaCO₃, except where natural conditions are less. If so, the discharge to the waterway should not further reduce the alkalinity of the receiving waters (25 Pa. Code § 93.7).

Total Dissolved Solids (TDS)

Total Solids refers to the suspended or dissolved matter that is left over after the sample of water is evaporated. Total Dissolved Solids are determined after the matter is filtered through a 2 μ m or smaller pore size filter which retains the suspended particles. Regular monitoring can assist in determining increased erosion or sedimentation influx into the waterway (EPA, 2006). The criteria for TDS is 500 mg/L as a monthly average or a maximum value of 750 mg/L (25 Pa. Code § 93.7).

Total Phosphorus

Total phosphorus refers to the dissolved and particulate forms of phosphorus in a water sample. Phosphorus is an essential nutrient that can enter water bodies in numerous ways. Fertilizers, waste treatment effluent, and agricultural/urban runoff are a few examples of how phosphorus can enter a system. Phosphorus tends to attach to soil particles making them easily transported during high runoff events. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms (EPA, 2006).

Appendix B – Benthic Macroinvertebrates

The organisms collected during the water quality study are called benthic macroinvertebrates. Benthic defines the zone in which they occupy which is on, in, or near the stream bottom. Macroinvertebrates are animals without a backbone and large enough to see with the naked eye. Macroinvertebrates are an important link in the food web between producers and higher consumers such as fish. They are commonly used to study water quality for several reasons. They are fairly easy to sample and identify, they are sensitive to pollution and changes in their habitats, they are common in most streams and rivers, and they offer an indicator of water quality over time due to their relatively long life cycle (Stroud Water Research, 2020).

Macroinvertebrates can be divided into several groups based on pollution tolerance. Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) and many others can be an indicator of the best water quality because they are intolerant of pollution in their habitats. Macroinvertebrates such as aquatic worms and blood midge larvae can tolerate a significant amount of pollution but can also live in a broader range of quality conditions. The ongoing collection of macroinvertebrate populations can indicate a drastic change in conditions, offer a clearer picture of water quality, and provide

overall environmental oversight in a stream (Penn State Extension, 2020).

Figure 1: Stonefly collected from Brodhead Creek.

Chalfant (2012) defines how PADEP assigns numeric pollution tolerance values (PTV) to most macroinvertebrates found in Pennsylvania in *A benthic index of biotic integrity for wadeable freestone*

streams in Pennsylvania. The values range from zero to ten, with ten representing a relative tolerance to pollution. Most of the values reflect the response to pollution-related to organic enrichment and sedimentation, and not necessarily reflective of other types of pollution such as low pH related to stream acidification. Chalfant lists the pollution tolerance values in Appendix D and includes other attributes pertaining to macroinvertebrate tolerance to pollution.

Macroinvertebrate Analysis

The PA Department of Environmental Protection (PADEP) has designed several assessment methods for Aquatic Life Use determinations based on the type of biological attributes and gradient conditions of a stream. For the Monroe County study sampling locations, the wadeable freestone riffle-run stream macroinvertebrate assessment method and the wadeable multihabitat stream macroinvertebrate assessment method were applied and described below. The published protocols and equations are designed to ultimately find the index of biotic integrity (IBI) which enables the ability to quantify the evaluation of the stream and assist in the management of the natural resource (Shull & Pulket, 2018).

Wadeable Freestone Riffle-Run Stream

The metrics used to evaluate the macroinvertebrate population in freestone riffle-run streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions while measuring different aspects of the benthic macroinvertebrate communities.

Freestone riffle/run stream macroinvertebrate collection is conducted with a D-framed net with 500 μm mesh. A 100-meter reach is chosen which best represents the ideal habitats describes in the methods section. Each of the six kicks disturbs 1 m² immediately upstream of the net to an approximate depth of 10 cm. The kicks are completed from downstream to upstream to avoid disturbance (Shull & Lookenbill, 2018). Once the sampling is complete, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification.

The following metrics and analyses are from Shull and Pulket (2018) wadeable freestone riffle-run stream macroinvertebrate assessment method in PA DEPs *Assessment Methodology for Rivers and Streams*:

Total Taxa Richness

This metric is the count of the total number of taxa in a sub-sample. As anthropogenic stress increases on a stream ecosystem, it is expected that the total taxa will decrease while generally increasing the dominance of a few pollutant tolerant taxa.

EPT Taxa Richness

EPT taxa richness metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample. The common name for these insect orders are mayflies, stoneflies, and caddisflies. The reason these are important metrics is that these insect orders are generally considered intolerant of many types of pollution. It is important to note that this metric excludes some of the more tolerant mayfly and caddisfly, and only counts the EPT taxa with pollution tolerant values (PTV) of 0 to 4. This metric reflects the loss of taxa with low pollution tolerance and is expected to decrease with increasing anthropogenic stress.

Modified Beck's Index (Version 3)

Modified Beck's index is a weighted count of taxa with a pollution tolerance value of 0, 1, or 2. The metric is expected to decrease as anthropogenic stress is increased.

Shannon Diversity

Shannon diversity is a community composition metric. It measures taxonomic richness and evenness of individuals across taxa of a sub-sample. When the loss of pollution intolerant taxa occurs and there is an increasing dominance of a few pollution tolerant taxa, it indicates an increase of stress to the ecosystem and the metric will decrease.

Hilsenhoff Biotic Index

The Hilsenhoff Biotic Index weighs the values by pollution tolerance and is a community composition and tolerance metric that is the average of the number of individuals in a sub-sample. The index increases with ecosystem stress and reflects the increasing dominance of pollution tolerant organisms.

Percent Sensitive Individuals

This metric accounts for the percent of individuals with pollution tolerance values from 0 to 3. The value is expected to decrease in value with increasing stress to an ecosystem reflecting the loss of pollution-sensitive organisms (Shull & Pulket, 2018).

Aquatic Resource Consulting provides the metrics calculated for both small and large stream sizes which are used to account for natural changes in benthic biota with stream size. Generally, the small stream values are used for first, second, and third-order streams draining less than 25 to 50 mi², while larger stream values are appropriate for fifth and larger streams draining more than 50 mi². PADEP does not set a single cutoff for drainage area or stream order and offers other screening considerations when making an assessment decision (Shull & Pulket, 2018). Careful consideration is made in this study for how the stream is assessed however, both values are included in the macroinvertebrate results below. Table 2 provides the standardization values used for each calculation.

EPT Taxa Richness Beck's Index	Metric Standardization Values									
Metric	Smaller Streams	Larger Streams								
Total Taxa Richness	33	31								
EPT Taxa Richness	19	16								
Beck's Index	38	22								
Hilsenhoff Biotic Index	1.89	3.05								
Shannon Diversity	2.86	2.86								
Percent Sensitive Individuals	84.5	66.7								

Table 2: Metric standardization values for small and large streams (Shull & Pulket, 2018).

Table 3 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The averaged sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts on the aquatic community being studied.

Metric	Standardization Equation (using small-stream standardization values)	Observed Metric Value	Standardized Metrics Score	Adjusted Standardized Metric Score Maximum = 100						
Total Taxa Richness	(Observed value / 33)*100									
EPT Taxa Richness	(Observed value / 19)*100									
Beck's Index	(Observed value / 38) *100									
Hilsenhoff Biotic Index	[(10-observed value) / (10-1.89)] *100									
Shannon Diversity	(Observed / 2.86)*100									
Percent Sensitive Individuals	(Observed value / 84.5)*100									
	Average of adjusted standardized metric scores = IBI Score =									

Table 3: Index calculation process for freestone riffle/run streams (Shull & Pulket, 2018).

Aquatic Life Use Attainment Benchmarks

PADEP implemented a multi-tiered benchmark decision flowchart (Figure 2) for the decision process of assessing if a wadeable, freestone, riffle-run stream has achieved its attainment. The simplified matrix should guide most decisions however, situations exist where the simplified matrix will not apply exactly as outlined. For further clarification on the Aquatic Life Uses, 25 Pa. Code § 93.3 offers the water quality criteria defined by the Pennsylvania Water Quality Standards.

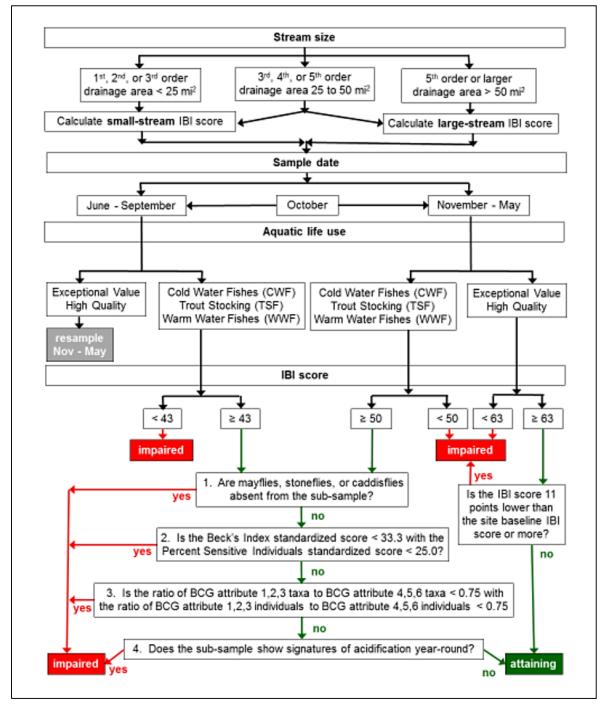


Figure 2: Aquatic Life Use Simplified Assessment Schematic (Shull & Pulket, 2018).

Considerations for the stream must be made before analyzing the IBI score and is shown in Figure 2.

- Stream Size: This is based on considerations given by DEP in the Assessment Methodology for *Rivers and Streams* (2018) and discussed above.
- Sample Date: The Monroe County water quality study is conducted annually between April and May.
- Aquatic Life Use: The stream designated use is defined in 25 Pa. Code § 93.9 and the existing use is defined in PADEP's *Existing Use Classification* (2020). These are noted before approaching this benchmark.

For samples collected in Exceptional Value (EV) or High Quality (HQ) streams, a score of \geq 63 results in ALU attainment if the IBI score is not lower than the baseline when available. A score of < 63 means that the stream was potentially not attaining its Aquatic Life Uses when it was sampled. For streams designated Cold Water Fishery (CWF), Trout Stocked Fishery (TSF), or Warm Water Fishery (WWF), an IBI score < 50 means that the stream was potentially not attaining it's Aquatic Life Use when it was sampled. An IBI score of \geq 50 requires the following additional evaluation to determine attainment (Shull & Pulket, 2018).

- 1. Are mayflies, stoneflies, or caddisflies absent from the sub-sample? These organisms are typically found in most healthy streams therefore if any or all of these orders are absent, it could indicate some sort of impact to the stream. Note that this question does not have to be applied to samples from larger streams and samples collected between June and September, but must be applied to small stream samples collected between November and May.
- 2. Is the standardized metric score for Beck's Index metric < 33.3 with the standardization metric score for the Percent Sensitive Individuals metric < 25.0? This serves as a double-check that the sample has substantial richness and abundance of the most sensitive organism.
- 3. Is the ratio of Biological Condition Gradient (BCG) attribute 1, 2, 3 <u>taxa</u> to BCG attribute 4, 5, 6 <u>taxa</u> < 0.75 with the ratio of BCG attribute 1, 2, 3 <u>individuals</u> to BCG attribute 4, 5, 6 <u>individuals</u> < 0.75? This evaluates the balance of pollution tolerant organisms with sensitive organisms in terms of taxonomic richness and organismal abundance. This question must be applied to small-stream samples collected between November and May but does not have to be applied to samples from larger streams and samples collected between June and September.</p>
- 4. Does the sub-sample show signatures of acidification year-round? The primary acidification signatures in a sub-sample include low mayfly abundance and low mayfly diversity (i.e., scarce mayfly individuals and few mayfly taxa), especially when combined with a high abundance of Amphinemura and/or Leuctra stoneflies, occasionally combined with a high abundance of Simuliidae and/or Chironomidae individuals. This information can be difficult to determine if low pH conditions are natural, so sampling water chemistry and/or fish communities can inform the

assessment. With this protocol, PADEP will only list impaired sites that show persistent acidification signatures year-round (Shull & Pulket, 2018).

Wadeable Multihabitat Stream

The metrics used to evaluate the macroinvertebrate population in multihabitat streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions of various low gradient habitats while measuring different aspects of the benthic macroinvertebrate communities.

Multihabitat stream macroinvertebrate collection is conducted with a D-framed net with 500 μ m mesh. A 100-meter reach is chosen which best represents the five habitat types described in the Methods section and Table 4 (Shull & Lookenbill, 2018). Once the ten samples are obtained, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification (Shull & Lookenbill, 2018).

Habitat Type	Description	Sample Technique
Cobble/Gravel Substrate	Stream bottom areas consisting of mixed gravel and larger substrate particles.	Place the net on the substrate near the downstream end of an area of gravel or larger substrate particles and simultaneously pushing down on the net while pulling it in an upstream direction with adequate force to dislodge organisms.
Snag	Submerged sticks, branches, and other woody debris that appears to have been submerged long enough to be adequately colonized.	The net is placed immediately downstream of the snag in an area where water is flowing; The snag is then kicked in a manner such attached organisms are dislodged.
СРОМ	A mix of plant parts (leaves, bark, twigs, seeds, etc.) that have accumulated on the stream bottom in "depositional" areas of the stream channel.	Pass the net along a 30in path through the accumulated organic material to collect the material and its associated aquatic macroinvertebrates.
SAV	Rooted aquatic macrophytes.	Draw the net in an upstream direction along a 30in path through the vegetation; Efforts should be made to avoid collecting stream bottom sediments.
Sand/Fine Sediment	Stream bottom areas that are composed primarily of sand, silt, and/or clay.	Bump and tap the net along the substrate along a 30in path.

Table 4: Habitat Types and Field Sampling Techniques (Shull & Lookenbill, 2018).

The following metrics and analyses are from Shull and Pulket (2018) wadeable multihabitat stream macroinvertebrate assessment method in PADEP's *Assessment Methodology for Rivers and Streams*:

Total Taxa Richness

Total taxa richness is similar to the freestone riffle/run metric. This metric is the count of the total number of taxa in a sub-sample.

EPT Taxa Richness

Similar to the freestone riffle/run metric, this metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample.

Beck4

Beck4 is a weighted taxon richness measure. It is based on Hilsenhoff Biotic Index Scores which measures the pollution tolerance of an organism on a scale of zero to ten, where the organisms' tolerance level decreases with the score. This is chosen because it better represents low-gradient streams. For Beck4, taxa with an HBI score of 0 or 1 are given 2 points and HBI scores of 2, 3, or 4 are given 1 point.

Shannon Diversity

Similar to the freestone riffle/run metric, it measures taxonomic richness and evenness of individuals across taxa of a sub-sample. When there is increased stress on a stream ecosystem, this metric will decrease.

Number of Caddisfly Taxa

The metric is the sum of the Caddisfly taxa present in the subsample.

Number of Mayfly Taxa

The metric is the sum of the Mayfly taxa present in the subsample (Shull & Pulket, 2018).

Table 5 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts on the aquatic community being studied.

Metric	Equation	Observed Metric Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100
Total Taxa Richness	(Observed / 31)*100			
EPT Taxa Richness	(Observed / 17)*100			
Beck4	(Observed / 22)*100			
Shannon Diversity	(Observed / 2.43)*100			
# of Caddisfly Taxa	(Observed / 11)*100			
# of Mayfly Taxa	(Observed / 6)*100			
	Average of adjusted stand	dardized metric scor	es = IBI Score =	

Table 5: Index calculation process for multihabitat streams (Shull & Pulket, 2018).

Aquatic Life Use Attainment Benchmarks

Aquatic Life Use for multihabitat low gradient has a benchmark of 55 therefore if the score is \geq 55 the stream has reached attainment, and if the score is < 55 the sample reach has not achieved attainment.

Precision Quantification

Two sampling locations were replicated to verify accuracy and minimize variability. One replicate site was conducted for freestone riffle/run habitat and the other was conducted on a mulithabitat stream. This also complies with the PADEP's quality assurance manual to verify identification work performed on macroinvertebrates.

Quality Assurance

Water samples were stored in coolers with ice packs for stabilization and then transported to EPA certified Microbac Laboratories. The specifics of the chemical parameters are discussed in Appendix A of this report. Data quality requirements were maintained in the field throughout the collections. The calibration of field equipment was performed daily.

Macroinvertebrate Collection Data

TAYON	· .								Quality S				
TAXON	Poll.Tol.			1	NOIVIBE		ECTED A		LING ST/				
ORDER	<u>.</u>	01	02	03	04	05	06	07	08	09	10	11	12
GENERA/SPECIES	Pc	•=											
AMPHIPODA (shrimp)		Арр	Aq	BC22	BC27	BC27r	BC30	BC31	BW1	BH1	BK7	BZ1	CH1
Gammarus spp.	4							31					2
BIVALVIA (clams) Pisidium spp.	8												
COLEOPTERA (beetles)	0												
Stenelmis spp.	5			7		3	10	5	2	7			10
Promoresia spp.	2								1	1			1
Dubiraphia spp.	6												
Optioservus spp.	4		2				5						4
Ectopria spp.	5	4		10	9	2	7	11	1		1	10	10
Psephenus herricki Microcylloepus spp.	4	4		19	9	2	/	11	1		1	19	16
Hydrochus spp.	5												
Leutrochus spp.	6												
Ancyronyx spp.				1									
Oulimnius spp.	5												
DIPTERA (true flies)							<u> </u>						
Chironomidae	6	42	34	39	52	35	25	18	25	14	39	49	23
Limnophora spp. Blepharicera spp.	6 0	1		4	8	5	1	8					╂────
Tipula spp.	4		6	<u> </u>	4	1							t
Hexatoma spp.	2	<u> </u>	Ť	t –	1	1			1	1		1	1
Pericoma spp.	4			L									
Hemerodromia spp.	6					8		3					
Tabanus spp.	5												
Atherix spp.	2			1									
Antocha spp.	3	3		4	1	1	4	2	 	-	1		3
Simulium spp.	6	1	11	1	1	3	ļ	3	 	1	ļ	1	┨────
Dicranota spp. Empididae spp.	3	1											
Prosimulium	2	<u> </u>	2		1							1	
Bezzia spp.	6		<u> </u>		-							1	
Chrysops spp.	7												
EPHEMEROPTERA (mayflies)													
Epeorus spp.	0	5		4	37	17	1		4	45		9	7
Mccaffertium spp.	3	5	9	10	5	9	16	5	3	1	13	7	9
Stenacron spp.	4			1									\square
Ephemerella spp.	1	32	15	41	31	57	40	25	68	14	15	29	79
Eurylophella spp. Drunella spp.	4	1 34	1	2 17	2	2	4 24	2	2 3	1 2	4	6	4
Danella spp.	2	54		1/	2	2	24	5	5	2	4	0	4
Attenuatella spp	2												
Seratella spp.	2	3		2	9	1		2			1	1	7
Leucrocuta spp.	1												
Paraleptophlebia spp.	1				9	15	1			3	5	2	
Leptophlebia spp.	4												
Heterocloen spp.	2									76			
Cinygmula spp.	1	l				1				76			
Nixe spp. Rithrogena spp.	2					4				2			<u> </u>
Leucrocuta spp.	1					4				2	10		1
Siphlonurus spp.	7							2			10		
Heptageniidae	3												
Ameletus spp.	0									1		4	
Isonychia spp.	3	6	2	3	2	2	1		6		1		2
Baetidae	6	<u> </u>	ļ	I						10			──
Diphetor spp. Baetis spp.	6 6	4			5	3	2		4				+
Acerpenna spp.	6	4		<u> </u>	5		۷		4				+
Plauditus spp.	4	<u> </u>		1					<u> </u>				1
Acentrella spp.	4	28		İ	7	5		8	1			17	1
GASTROPODA (snails)													
Physinae	8												
Fossaria	7							1					
HEMIPTERA (true bugs)													
Microvelia spp.	9												
HIRUDINEA (leeches) Myzobdella spp.	8												
ISOPODA (sowbugs)													
Caecidotea spp.	6							1					
LEPIDOPTERA (moths)	· · ·												
Petrophila spp.	5												
MEGALOPTERA (hellgramites)													
Sialis spp.	6			1									
Corydalus spp.	4												
Nigronia spp.	2	1	ļ	1	1				 		ļ		2
NEMERTEA	6	───		 			L		 				
NEMATOPHORA (horsehair worm)	9												
ODONATA (dragon flies) Libellula spp.	8												
Calopteryx spp.	6												+
Hagenius spp.	3	l	<u> </u>	1					t				1
Gomphidae spp	4	i		2		1			İ	1		2	1
Boveria snn	2	1	2	1	1			i	i	1	1	1	1

Gomphicae spp	4			Z								Z	
Boyeria spp.	2		2	1							1		
Ophiogomphus spp.	1			2				1					
Progomphus spp.	5												
Gomphus spp.	5										2		
Lanthus spp.	5												
Stylogomphus spp.	4			1	2		1						
calopteryx spp.	6		1										
Cordulegaster spp.	3												
Tachopteryx spp.	5												
OLIGOCHAETA (worms)	10	2	1		3	2		14	10		2	1	3
PLECOPTERA (stoneflies)													
Leuctra spp.	0	2	2	1	6		2					11	
Taeniopteryx spp.	2												
Amphinemura spp.	3	1	15		1				5	3		3	
Haploperla spp.	0									4			
Pteronarcys spp.	0									1			
Acroneuria spp.	0	3	3	3	2	1	2	1	3		3	7	3
Paragnetina spp.	1	2	4	2			1						
Agnetina spp.	1				1				1		1		
Perlesta spp.	4							2					
Suwallia/Sweltsa spp.	0	2	1			3			2	8		36	
Shipsa spp.	2												
Alloperla spp.	0									7			
Tallaperla spp.	0		1							2			
Diploperla spp.	2												
Clioperla spp.	2									1			
Alocapnia spp.	3								1				

Diura spp.	2			1		1		1	1				<u> </u>
	2			L						2			
Yuqus spp. Cultus spp.	2				1					2			
	2		6		2	2				3	8		
Isoperla spp. TURBELLARIA (flatworms)	2		0		Ζ	2				3	ð		
Macrostemum spp.	8												
TRICHOPTERA (caddisflies)	0												
Chimarra spp.	4		2	1			2		7				3
Wormaldia spp.	4		2	1			2						
Dolophilodes spp.	0	6	1	1	6	3	-		4				
Neophylax spp.	3	2	1	1	2	2			2			1	
Hydropsyche spp.	5	2	4		Ζ	2	-	2	1			1	
Diplectrona spp.	0		2					2	1	2		1	
macrostemum spp.	3		2							2		1	
Ceratopsyche spp.	5	1	7	7	6	3	3	9	4			1	7
Cheumatopsyche spp.	6	3	14	, 15	2	7	15	17	18		6	1	12
Parapsyche spp.	0	3	14	10	2		10	1/	10		U		- 12
Diplectrona spp.	0	2							2				
Rhyacophila spp.	1	8	1	5	13	6	3		4	9			10
Lepidostoma spp.	1	0	1	5	10		2	2	<u> </u>	5			10
Psilotreta spp.	0			3			2	2			5		
Glossossoma spp.	0												
Agapetus spp.	0								3				
Protoptila spp.	1												2
Psychomyia spp.	2												
Brachycentrus spp.	1			1									
Lype spp.	2			-									
Micrasema spp.	2												
Goera spp.	0			2									
Ceraclea spp.	3							4					
Helicopsyche spp.	3												
Leucotrichia spp.	6												
Pycnopsyche spp.	4		7			1		1			1		1
Oxyethira spp.	3												
Hydatophylax spp.	2												
Polycentropus spp.	6					6	1		1		5		5
Nectopsyche spp.	3												
Neureclipsis spp.	7										1		
TOTAL		206	156	206	232	212	173	185	188	221	125	209	216
METRICS													
Total Taxa Richness	1	29	27	34	31	32	24	27	28	26	21	22	24
Shannon Diversity Index	1	2.57	2.76	2.74	2.71	2.69	2.50	2.79	2.46	2.31	2.43	2.39	2.43
EPT Taxa Richness	1	17	16	18	17	17	13	11	18	20	12	14	12
Hilsenhoff Biotic Index	1	2.92	2.99	3.24	2.84	2.92	3.12	4.23	3.17	1.45	3.56	2.62	2.86
Percent Intolerant Individuals	1	57.8	42.3	51.5	59.1	60.4	56.1	23.8	59.6	85.1	54.4	57.9	60.2
Modified Beck's Index	1	31	27	36	32	31	21	11	27	42	19	27	19
IBI SMALL STREAM	1	84.1	78.3	88.3	86.8	86.8	72.5	60.9	81.9	93.3	67.6	75.7	72
IBI LARGE STREAM	1	95.0	91.2	95.0	97.2	97.4	87.4	70.4	94.0	94.1	81.4	88.1	85.7
	J					57.17	0				V /	00.1	

TAXON	ں د	2020 Monroe County Water Quality Study NUMBER COLLECTED AT SAMPLING STATION												
ORDER	Pollutio n Toleranc	12		45			Г — Т					22	24	25
GENERA/SPECIES	Pol Tol	13	14	15	16	17	18	19	20	21	22	23	24	25
AMPHIPODA (shrimp) Gammarus spp.	4	CH6	CH6r	FH20	IR3	JO1	KPR2	MR11	MR18 4	MR19	MC10 3	MC22	MC37 5	MD4
BIVALVIA (clams)		4									3			
Pisidium spp. COLEOPTERA (beetles)	8	1										1		
Lutrochus spp. Microcylloepus spp.	6 2											2		1
Stenelmis spp.	5										3			
Dubiraphia spp. Promoresia spp.	6 2		1				1				1	6		1
Stenelmis spp.	5								3		-			
Ectopria spp. Optioservus spp.	5 4	3	6		4	6	2		3		1	4	1	
Agabus spp. Micronychus spp.	5													
Lutrochus spp.	6													
Oulimnius spp. Psephenus herricki	5			4				11	39	5	14	2	7	5 4
DECAPODA Cambarus spp.	6						2							
DIPTERA (true flies)							_							
Chironomidae Probezzia spp.	6 6	28	15	40	81 1	59	48	55	11	9	36	15	2	16
Bezzia spp.	6				-									
Hemerodromia spp. Blepharicera spp.	6 0							1			2			
Limnophora spp. Chrysogaster spp.	6 10				2		1					1		
Muscidae	6													
Tipula spp. Hexatoma spp.	4	1	1	1	1 12	6						2	1	1
Atherix spp.	2	_											<u> </u>	
Antocha spp. Tabanus spp.	3	2	1		4	5			1		5	2	1	
Empedidae spp.	6													
Dicranota spp. Prosimulium spp.	3 0											5		
Pseudolimnophila spp. Ptychoptera spp.	2			1									F	—
Clinocera spp.	6												1	
Chrysops spp. Simulium spp.	76	1	1		3	1	133	6		2	2	3	3	1
EPHEMEROPTERA (mayflies)		-			26				4		2			24
Epeorus spp. Mccaffertium spp.	03	11	6	5	26	17 1		6	1 6	1	3	5 5	22	24 11
Stenacron spp. Ephemerella spp.	4	60	106	12	21	2 19		48	57	119	38	48	41	38
Eurylophella spp.	4		1	12	21	15		1		115			1	1
Serratella spp. Leucrocuta spp.	2 1	8	2					1 3	10		4	9	4	1
Dannella spp. Drunella spp.	2 1			26				6	4		4	2	1	1
Heterocloen spp.	2			20					4		4		1	
Paraleptophlebia spp. Isonychia spp.	<u>1</u> 3	2			1	19		6	5	2		9 2	1	4
Ameletus spp.	0													
Caenis spp. Baetis spp.	76		1	9	7	6		11	3			5		18
Acerpenna spp. Nixe spp.	6 2					2			5	3				
Ameletus spp.	0					2								1
Acentrella spp. Rhithrogena spp.	4			33				5			18	7	3	9
Ephemera spp.	2													
Plauditus spp. Diphetor spp.	4			3	3	6				2				1
Cinygmula spp.	1					10								
GASTROPODA (snails) Gyraulus spp.	6													
Fossaria spp. Valvata spp.	2								2					
HEMIPTERA (true bugs)														
HIRUDINEA (leeches)														
ISOPODA (Sowbugs)														
Caecidotea spp.	6													
MEGALOPTERA (hellgramites) Sialis spp.	6													
Nigronia spp. Corydalus spp.	2 4						3		2	1	<u>1</u> 1	3		1
ODONATA (dragon/damsel flies)														
Gomphidae Lanthus spp.	5 4			1						5		1	<u> </u>	<u> </u>
Progomphus spp.	5													
Cordulegaster spp. Stylogomphus spp.	3 4					1	1	1						
Bayeria spp. Gomphidae	2 4						1 17						F	Ē
Calopteryx spp.	6		1				1/							
Ophiogomphus spp. OLIGOCHAETA (worms)	1 10	5	5						22			3	30	
PLECOPTERA (stoneflies)														
Paraleuctra spp. Leuctra spp.	0	2			2	2	1	2	2			4		1
Amphinemura spp.	3	7	11					2	3		4	4	1	
Pteronarcys spp. Acroneuria spp.	0		1	1	7		1	1 10	3	1	<u>1</u> 5	6	1 4	2
Paragnetina spp. Agnetina spp.	1 2	1		1	1				1		1	5	F	—
	0	1			4	5	1					2		3
Suwallia/Sweltsa spp.				-	-	-	-	-	-		1		-	I
Suwallia/Sweltsa spp. Perlesta spp.	4	1	3		1	6					1			
Suwallia/Sweltsa spp. Perlesta spp. Tallaperla spp. Diploperla spp.	4 0 2	1	3		1	6								
Suwallia/Sweltsa spp. Perlesta spp. Tallaperla spp.	4 0	1	3	40	1	6						3		

Isogenoides spp.	0													
Haploperla spp.	0			6										
Diura spp.	2			Ű	5									
Clioperla spp.	2					3								
Remenus spp.	2													
TURBELLARIA (flatworms)	9											1		
TRICHOPTERA (caddisflies)														
Chimarra spp.	4	9	1	1					3		4			
Dolophilodes spp.	0	2	1								4	3		5
Hydropsyche spp.	5	10	1						3				1	
Cheumatopsyche spp.	6	19	3		4			2	11	1	29	2	41	12
Wormaldia spp.	0									1				
Parapsyche spp.	0					1						_		
Ceratopsyche spp.	5	10	7		11			2	3		15	8	12	7
Diplectrona spp.	0			1	1	20		8	1	21				14
Psilotreta spp.	0								1		-		<u> </u>	
Rhyacophila spp.	1	1	1		14	2		3	8		6	13	7	12
Glossosoma spp.	0													
Neureclipsis spp.	7													
Psychomyia spp.	2													
Nyctiophylax spp.	6													
Parapsyche spp.	0				-						-			
Lepidostoma spp.	1				2						2		4	
Leucotrichia spp.	6													
Protoptila spp.	1 2							1		4			1	
Micrasema spp.		1		2	1			1	1	4		2	1	1
Neophylax spp.	3	1		2	1 1				1	2		2	1	1
Pycnopsyche spp. Brachycentrus spp.	4				1									
Agapetus spp.	0								1					1
Psychomyia spp.	2								1					1
Macrostemum spp.	3													
Nectopsyche spp.	3													
Mystacides spp.	4													
Polycentropus spp.	6			1	2	2		2	1					1
Pycnopsyche spp.	4	6	7	1	2	2		<u> </u>	1	1	1			-
TOTAL	-	194	187	189	228	203	213	196	221	198	208	201	196	203
METRICS		194	107	109	220	205	213	190	221	190	200	201	190	205
Total Taxa Richness		25	23	20	29	24	14	25	32	19	28	36	25	32
										-				
Shannon Diversity Index		3.54	1.83	2.21	2.47	2.53	1.18	2.40	2.67	1.64	2.64	3.08	2.40	2.83
EPT Taxa Richness		15	12	12	16	15	4	16	17	11	15	18	13	19
Hilsenhoff Biotic Index		3.49	2.50	2.88	3.50	2.82	5.63	3.28	3.65	1.74	3.67	1.75	4.37	2.42
Percent Intolerant Individuals		51.5	71.5	50.3	47.4	59.1	4.7	50.5	48.4	71.7	37.5	72.6	44.9	62.1
Modified Beck's Index		16	12	18	28	30	14	22	28	16	25	29	17	40
IBI SMALL STREAM		73	67.6	66.0	78.1	79.6	33.5	74.1	81.5	66.6	74.1	92.8	65.9	93.8
IBI LARGE STREAM	1	86.3	78.0	79.0	90.8	91.4	47.0	89.5	92.9	76.7	87.3	100	78.6	98.7

											uality S					
TAXON ORDER	Pollutio n Tolerand			1		NUN	VIBER C	OLLEC	FED AT	SAMP	LING ST	ATION		1		
GENERA/SPECIES	POIN L'Alei	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
AMPHIPODA (shrimp)		ML3	PA8	PA9	PO1	PO9	PO14	PH1	PH29	SA2	SA20	SS1	SS2	SW10	T014	TN3
Gammarus spp. BIVALVIA (clams)	4									14						
COLEOPTERA (beetles) Microcylloepus spp.	2															
Macronychus spp. Stenelmis spp.	25								8				8		10	2
Promoresia spp.	2								8 1		1		0	2	10	2
Stenelmis spp. Optioservus spp.	5	6	29				5	6		8		13	2			
Ancyronyxs pp.	2		4	2			10			0			_			4
Psephenus herricki Ectopria spp.	4 5	3	1	2		1	18	1		8						1
Oulimnius spp. DECAPODA	5													21		
Cambarus spp.	6								1							1
DIPTERA (true flies)																
Chironomidae	6	41	28	119	7	35	51	50	46	130	14	27	27	6	23	26
Limnophora spp. Blepharicera spp.	0	2	2		10	4	4					2	2	3 1		1
Hemerodromia spp. Empididae	6 6					4										
Muscidae	6															
Chrysogaster spp. Tipula spp.	10 4	1				1	1									1
Hexatoma spp.	2	5		1	8	2		4						6		
Atherix spp. Antocha spp.	2 3				1		5	2	1	3				1	2	3
Prosimulium spp.	2	2	2	3	1				_				57		1	
Simulium spp. Dicranota spp.	6 3				6		2	2	1			71	18	3	2	1
Probezzia spp.	6															
Bezzia spp. Tabanus spp.	6 5															
Chrysops spp.	7			1												
Dolichocephala spp. EPHEMEROPTERA (mayflies)				1												
Epeorus spp. Mccaffertium spp.	03	64 1	5 2	3	86 5	8 13	11	1 6	3 32	3	1	5		12	3 15	19
Stenacron spp.	4		2	5				U	52	5	-				2	16
Cinygmula spp. Ephemerella spp.	1	1 18	23	3	15 14	1 40	11	49	37		2			11 25	9	
Eurylophella spp.	4	2		1						6					12	2
Caenis spp. Drunella spp.	7		59		1	10				1	1			1	24	
Serratella spp.	2		1				25	1	1							
Drunella spp. Paraleptophlebia spp.	1 1	3			1	1	25	1 9				1		3	1	
Leptophlebia spp. Habrophlebiodes spp.	4 6															
Isonychia spp.	3		3				4		12						23	
Ameletus spp. Baetis spp.	0 6	1	1	2	23	9		1			4	4		14	2	
Rhythrogena spp.	0		1	2	25	5		2	2		4	4		14	2	
Diphetor spp.	6	11	1					2						3		
Acerpenna spp. Acentrella spp.	6 4		8	22		2	10			7	2					3
GASTROPODA (snails)																
HEMIPTERA (true bugs) Microvelia spp.	9															
HIRUDINEA (leeches)																
ISOPODA (sowbugs)																
MEGALOPTERA (hellgramites)																
Sialis spp.	6		1						2							2
Nigronia spp. Corydalus spp.	2 4		1						2						6	2
ODONATA (dragon/damsel flies)																
Boyeria spp. Cordulegaster spp.	2 3	<u> </u>									2				1	3
Gomphidae	4	1							1	2	3			1		1
Ophiogomphus spp.	1															
Gomphus spp.	5														1	
Hagenius spp.	3															
Argia spp. Progomphus spp.	6 5															
Lanthus spp. Stylogomphus spp.	5 4			1				4		2						
OLIGOCHAETA (worms)	4 10		1			3		4		3 7		18		14	1	
PLECOPTERA (stoneflies)																
Leuctra spp.	0	2	4	2	2			3		3	5	1	3	3		
Amphinemura spp. Pteronarcys spp.	3 0	1						5			6	7		1		2
Perlidae	3															
Acroneuria spp. Paragnetina spp.	0	2	2	1	1	1	4	2	5	8	3	1	3	<u> </u>	3	3
Agnetina spp.	1	1	2	1	1		1							2		
Suwallia/Sweltsa spp. Paranemoura spp.	0	28	7	6	3	6						5	2	14		
Tallaperla spp.	0	1						2								
Diploperla spp. Clhloroperlidae	2 0								1							
Clioperla spp.	2															
Diura spp. Cultus spp. Isoginoides app.	2				3											

Taeniopteryx spp.	2	r												r		
Beloneuria spp.	3					2										
Perlesta spp.	4															
Isoperla spp.	4		1	1		6		15	1					8		1
TURBELLARIA (flatworms)	Ζ		1	1		0		15						0		1
TORBELLARIA (Ilatworitis)																
TRICHOPTERA (caddisflies)																
Chimarra spp.	4		1				3		2	2		22				
Brachycentrus spp.	1													4		
Dolophilodes spp.	0	1	4	5		2	6		1			1		1		
Hydropsyche spp.	5			1						2		4				
Cheumatopsyche spp.	6		3	1			18	1	8	5	6	8		6	12	4
Agarodes spp.	2															3
Lype spp.	2							2	2							2
Ceratopsyche spp.	5	3	4	11	19	16	6	1	8			3		13	9	9
Diplectrona spp.	0	5				1	1	20	4			4	1	2		
Glossossoma spp.	0			1												
Wormaldia spp.	0															
Rhyacophila spp.	1	4	2		4	11	5	1	7			3		12	1	1
Neureclipsis spp.	7														12	
Parapsyche spp.	0															
Agapetus spp.	0													1		
Ceraclea spp.	3										1					
Lepidostoma spp.	1	2				1	1	4		13						
Macrostemum spp.	3														3	
Cyrnellus spp.	8			1												
Neophylax spp.	3		1	1		2			1		2	1			1	
Psilotreta spp.	0		1			2								1		
Mystacides spp.	4							2								
Apatania spp.	3															
Micrasema spp.	2									1		1				
Diphetor spp.	6															
Nyctiophylax spp.	7	1						1							1	
Limnephilidae	4															
Phylocentropus spp.	5															
Polycentropus spp.	6		1		3	3	2	2	3	2						
Pycnopsyche spp.	4			2		2		6	1							3
Goera spp.																
TOTAL		213	201	195	214	193	194	210	192	228	53	202	123	198	185	112
METRICS																
Total Taxa Richness		28	30	25	21	30	22	32	27	20	15	12	11	31	27	25
Shannon Diversity Index		2.35	2.45	1.68	2.20	2.74	2.54	2.58	2.45	1.85	2.38	2.01	1.27	3.00	2.80	2.59
EPT Taxa Richness		18	17	14	12	20	12	19	16	9	9	7	4	19	13	10
Hilsenhoff Biotic Index		2.01	2.72	4.91	1.90	2.99	3.89	2.82	3.34	4.79	3.83	3.58	3.51	3.22	3.67	3.60
Percent Intolerant Individuals		67.6	60.2	14.4	72.9	60.6	38.1	61.9	58.9	14.0	49.1	28.1	55.3	54.5	49.7	36.6
Modified Beck's Index		46	32	24	26	37	20	32	27	11	12	14	16	44	19	13
IBI SMALL STREAM		90.0	85.2	58.5	76.4	90.4	65.3	88.9	79.1	47.1	57.0	48.8	47.7	90.3	72.5	62.6
IBI LARGE STREAM		95.4	95.4	70.3	86.6	97.2	78.5	97.2	92.8	55.2	67.5	58.5	59.0	96.5	86.4	73.3

An amendment to the macroinvertebrate results was made on October 22, 2020, to include the multihabitat low-gradient scores for three sites.

Aquashicola Creek 19				
Metric	Equation	Observed Metric Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100
Total Taxa Richness	(Observed / 31)*100	27	87.1	87.1
EPT Taxa Richness	(Observed / 17)*100	19	111.8	100
Beck4	(Observed / 22)*100	27	122.7	100
Shannon Diversity	(Observed / 2.43)*100	2.76	113.6	100
# of Caddisfly Taxa	(Observed / 11)*100	8	72.7	72.7
# of Mayfly Taxa	(Observed / 6)*100	4	66.7	66.7
	es = IBI Score =	87.8		

Cherry Creek 06									
Metric	Equation	Observed Metric Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100					
Total Taxa Richness	(Observed / 31)*100	25	80.6	80.6					
EPT Taxa Richness	(Observed / 17)*100	18	105.9	100					
Beck4	(Observed / 22)*100	26	118.2	100					
Shannon Diversity	(Observed / 2.43)*100	3.53	145.3	100					
# of Caddisfly Taxa	(Observed / 11)*100	8	72.7	72.7					
# of Mayfly Taxa	(Observed / 6)*100	3	50	50					
	Average of adjusted standardized metric scores = IBI Score =								

Cherry Creek 06R				
Metric	Equation	Observed Metric Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100
Total Taxa Richness	(Observed / 31)*100	23	74.2	74.2
EPT Taxa Richness	(Observed / 17)*100	16	94.1	94.1
Beck4	(Observed / 22)*100	12	54.5	54.5
Shannon Diversity	(Observed / 2.43)*100	1.83	75.3	75.3
# of Caddisfly Taxa	(Observed / 11)*100	7	63.6	63.6
# of Mayfly Taxa	(Observed / 6)*100	5	83.3	83.3
	es = IBI Score =	74.2		

Note - The primary difference between the Cherry Creek 06 and 06R was the lower score for Shannon Diversity at 06R. This was caused mostly by a greater number of the mayflies Ephemerella in 06R. Since Ephemerella mayflies are intolerant, this difference does not necessarily reflect a difference in organic pollution between samples.

Appendix C – Habitat Assessment

The habitat assessment is a modification of the habitat evaluation methods from the USEPA *Rapid Bioassessment Protocols*. It is used to evaluate key physical characteristics of the available habitat and conditions to aquatic biota which impacts the community structure and composition. The parameters are scored on a scale of 1 - 20, where 20 represents the most optimal conditions for that category. The following parameters are directly based on the Shull and Lookenbill (2018) *Water Quality Monitoring Protocols for Streams and Rivers* and are followed by examples of the datasheets from the protocols:

Riffle/Run Parameters

- 1. Instream Fish Cover The percent makeup of the substrate that provides refuge for a variety of fish.
- 2. Epifaunal Substrate Evaluates the riffle quality relative to stream width and the abundance of dominant substrate materials.
- 3. Embeddedness This evaluates the extent to which gravel/cobble/or boulders are covered by smaller particle substrate.
- 4. Velocity Depth Regimes Evaluates the presence of all four depth regimes in riffle/run habitat.
- 5. Channel Alteration Evaluates the extent of channelization, dredging, or any other large-scale changes to the shape of the stream channel that has occurred that are detrimental to the habitat.
- 6. Sediment Deposition This parameter looks at islands, point bars, or deposition in pools to estimate the extent of sediment deposits.
- 7. Riffle Frequency Estimates the frequency of riffle occurrence based on stream width.
- 8. Channel Flow Status Evaluates the flow conditions relative to bank height and width and the exposed channel substrate.
- 9. Condition of Banks This parameter looks for signs of erosion or the potential for erosion on the stream bank using a bank full delineation.
- 10. Bank Vegetative Protection Assesses the extent of stream bank covered by vegetation which provides stabilization through root coverage.
- 11. Grazing or Other Disruptive Pressures This parameter evaluates the impact on the surrounding area by human activities.
- 12. Riparian Vegetative Zones Estimates the width of the riparian zone from the edge of the stream bank out through the riparian zone. Assesses the presence of roads, parking lots, lawns, etc., that decreases the riparian zone length.

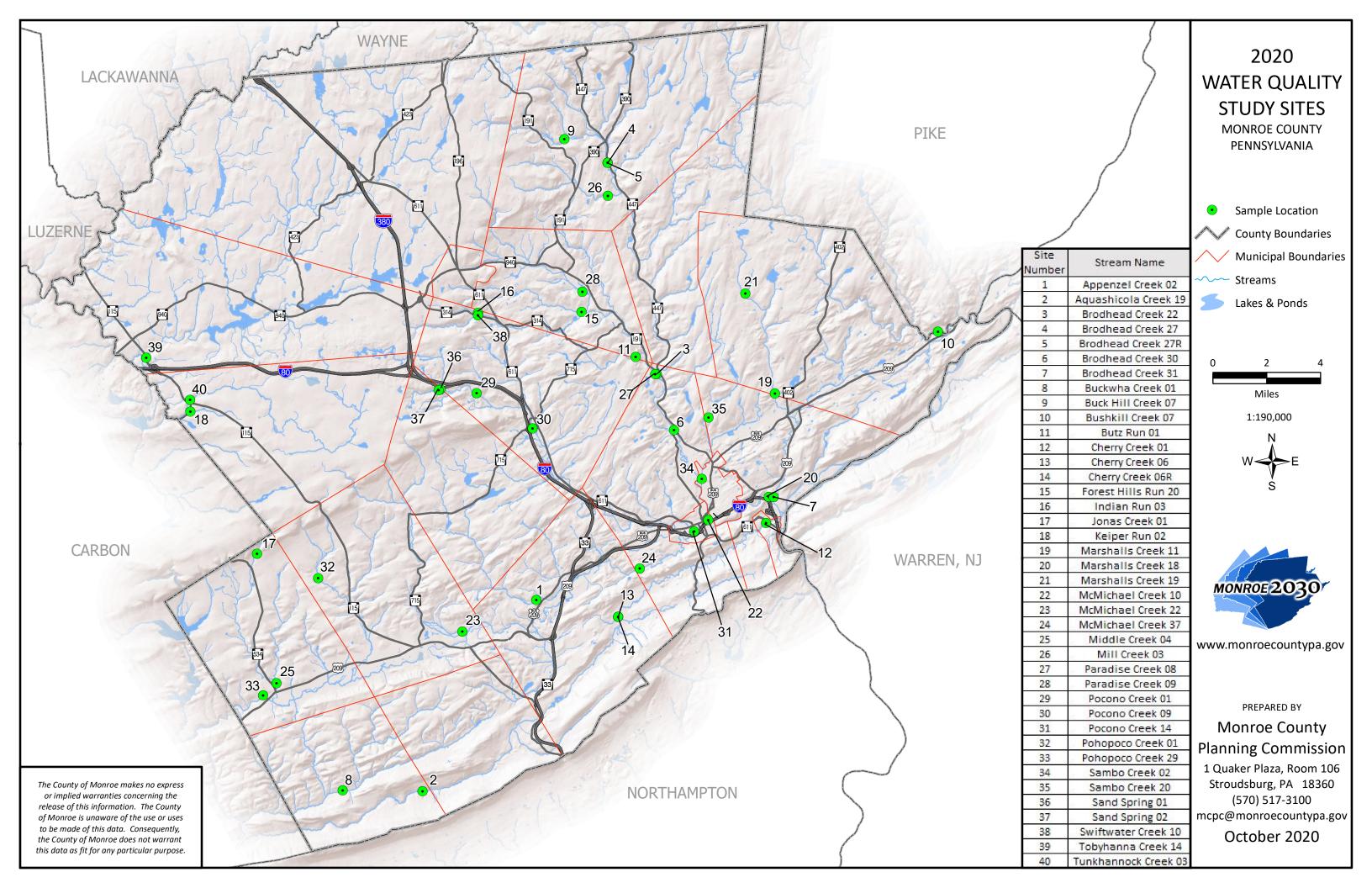
Riffle/Run Habitat Evaluation Form

(Fish) boulder, cobble, or other stable habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat; habitat cobble, or other stable habitat; adequate habitat; habitat boulder, cobble, or other stable habitat; habitat 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 3 2 2. Epifaunal Substrate Weil-developed riffe and run; riffe is as wide as stream and length extends two times the width of stream; eadundance of cobble; oomnon. Riffe or nu virtue anonexistent large boulders and gravel common. Riffes or nu virtue anonexistent large boulders and gravel common. Riffes or nu virtue anonexistent large boulders and boulder particles are 0. Riffes or nu virtue anonexistent large boulders and boulder particles are 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and boulder particles are 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent large boulders and 0. Riffes or nu virtue anonexistent l		Physical Habitat E	valuation F	orm for R	iffle/Run Prevalence	
Investigators: Completed By: Parameter Optimal Suboptimal Marginal Poor 1. Instream Cover (Fish) Greater than 50% mix of boulder, submerged logs, undercut banks, or other stable habitat. 10-30% mix of boulder, cobble, or other stable habitat, adequate habitat, adequate habitat, adequate habitat, adequate stream and length is less thream and length extends two times the width of stream; abundance of cobble. 10 9 8 7 6 5 4 3 2 2. Eplfaunal Substrate width of stream; abundance of cobble. Qi 19 18 17 16 15 14 12 11 0 9 8 7 6 5 4 3 2 2. Eplfaunal Substrate width of stream; abundance of cobble. 18 17 16 15 14 12 11 0 8 7 6 5 4 3 2 3. Embeddedness Gravel, cobble, and boulder particles are 25- sediment. Gravel, cobble, and boulder particles are 25- soft as shallow; sediment. Gravel, cobble, and boulder particles are 25- of 3 5 4 3 2 19 18 17	Waterbody Name:	Ġ	IS Key (YYYYM	MDD-hhmm-U	ser):	
Parameter Optimal Suboptimal Marginal Poor 1. Instream Cover (Fish) Greater than 50% mix of boulder, submerged logs, underout banks, or other stable habitat, stable habitat, adequate habitat, adequate mabitat, adequate habitat, habitat habitat habitat habitat, habitat hab	Location:					
1. Instream Cover (Fish) Greater than 50% mix of boulder, boulder, cobble, or other stable adding: adequate habitat; habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat; habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat; habitat; adequate habitat; habitat; adequate habitat; adequate habitat; habitat; adequate habitat; ha	Investigators:			Completed	By:	
(Fish) boulder, cobble, submerged logs, underout barks, or other stable habitat a dequate habitat. cobble, or other stable habitat anderout barks, or other stable habitat is deviaute habitat. boulder, cobble, or other stable habitat anderout barks, or other stable habitat. boulder, cobble, or other stable habitat is deviaute habitat. boulder, cobble, or other stable habitat is deviaute habitat. 20 19 18 17 16 15 14 13 12 11 0 9 7 6 5 4 3 2 2. Epifaunal Substrate Weil-developed riffle and run; riffle is as wide as stream and length extends two times the width of stream, obuiders and gravel common. Riffles or run virtue nonexistent, large boulders and bedrok prevent. Riffles or run virtue nonexistent large boulders and bedrok prevent. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 3. Embeddedness Gravel, cobble, and boulder particles are 25-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. 5 4 3 2 11 10 9 8 7 6 5 4 3 2<	Parameter	Optimal	Subor	otimal	Marginal	Poor
2. Epifaunal Substrate Well-developed riffie and run; riffie is as wide as tream and length extends two times the abundance of cobble; width of stream; abundance of cobble. Run area may be lacking; riffie not as wide as stream and its length is less than 2 times the stream width; gravel or abundance of cobble. Riffle is as wide as stream width; less than 2 times the stream width; gravel or abundance of cobble; boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel or boulders and bedrock prevalent; some cobble present. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 3. Embeddedness Gravel, cobble, and boulder particles are 0: Sediment. Gravel, cobble, and boulder particles are 25- % surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- % surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- % surrounded by fine sediment. Dominated by 1 20 19 18 17 15 14 13 12 11 10 9 7 6 5 4 3 2 4. Velocity/Depth Regimes All four velocity/depth regimes present (slow- the, plocity/dept regimes), eeder, fast shallow) Only 3 of the 4 regimes, present or both banks; and 40 to 80% of stream reach channelization is not present		boulder, cobble, submerged logs, undercut banks, or other stable habitat.	cobble, or oth habitat; adeq habitat.	ner stable uate	cobble, or other stable habitat; habitat availability less than desirable.	
Iur; riffe is as wide as stream and length extends two times the width; extends two times the width of stream; abundance of cobble; boulders and gravel common. lacking; riffe not as wide is less than 2 times the boulders and bedrock prevalent; come cobble prevalent; cobble is stream width; gravel or large boulders and gravel cobble, and bedrock prevalent; some cobble prevalent; some cobble prevalent; some cobble prevalent; some cobble prevalent; cobble, and boulder particles are 50-25% surrounded by fine sediment. 0 9 8 7 6 5 4 3 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 3. Embeddedness Gravel, cobble, and boulder particles are 50-25% surrounded by fine sediment. Solf and the regimes 75% surrounded by fine sediment. 5 4 3 2 10 9 8 7 6 5 4 3 2 4. Velocity/Depth Regimes All four velocity/depth regimes). Coll set and the regimes). Coll set and the regimes). Coll set and the regimes).	2 Entrance Cashedrate					
3. Embeddedness Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-5% surrounded by fine sediment. Gravel, cobble, and boulder particles are 20-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. 20 19 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 4. Velocity/Depth Regimes All four velocity/depth regimes present (if fast-shallow is regimes), fast shallow) Only 3 of the 4 regimes, braising, score lower than if missing other regimes). Image: main sing, score lower than if missing other regimes). Dominated by 1 velocity/depth regimes braising, score lower than if missing other regimes). Some channelization present. No channelization or dredging present. Some channelization present (annelization react channelization is not present, but recent channelization is not present. No channelized and disrupted. Banks shored with gaion or cement of slands or point bars and less than 5% of the bottom affected by sediment deposition in pools. Some new increase in bar information, mostly fro	z. Epiraunai Substrate	run; riffle is as wide as stream and length extends two times the width of stream;	stream but le than two time abundance o boulders and	ngth is less s width; f cobble;	lacking; riffle not as wide as stream and its length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some	nonexistent; large boulders and bedrock prevalent; cobble lacking
boulder particles are 0- 25% surrounded by fine sediment. boulder particles are 25- 50% surrounded by fine sediment. boulder particles are 50- 75% surrounded by fine sediment. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 4. Velocity/Depth Regimes All four velocity/depth regimes present (slow- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is if missing, score lower than shallow or slow-shallow deep, fast shallow) Only 2 16 5 4 3 2 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 5. Channel Alteration dredging present. No channelization of blage abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present. of islands or point bars and less than 5% of the stream of islands or point bars and less than 5% of the bottom affected; slight deepsition 10 9<		20 19 18 17 16	15 14 1	3 12 11	10 9 8 7 6	5 4 3 2 1
4. Velocity/Depth Regimes All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is missing, score lower than if missing other regimes). Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other regimes). Dominated by 1 velocity/depth regi (usually slow-deep) 20 19 18 17 16 15 14 13 12 11 0 9 8 7 6 5 4 3 2 5. Channel Alteration No channelization or dredging present. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present. New embankments preach channelization is not present. Banks shored with gabion or cement of allorupted. 20 19 18 17 16 15 14 13 12 11 0 9 8 7 6 5 4 3 2 6. Sediment Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Some new increase in bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools. Moderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom affected; sli	3. Embeddedness	boulder particles are 0- 25% surrounded by fine	boulder partie 50% surroune	les are 25-	boulder particles are 50- 75% surrounded by fine	more than 75% surrounded by fine
Regimesregimes present (slow- deep, slow shallow, fast- deep, fast shallow)present if fast-shallow is missing, score lower than if missing other regimes.)regimes present (if fast- shallow or slow-shallow are missing, score lower than are missing, score lower than if missing other regimes.)velocity/depth regime (usually slow-deep)2019181716151413121110987654325. Channel Alteration dredging present.No channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present.New embankments present, usually in areas of bridge abutments; evidence of past channelization is not present.New embankments present on both banks; and 40 to 80% of stream reach channelized and disrupted.Banks shored with gabion or cement of 80% of the stream reach channelized and disrupted.2019181716151413121110987654326. Sediment DepositionLittle or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.Some new increase in bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools.Moderate deposition of new gravel coarse sand on of and new bars; 30- 50% of the bottom affected; sediment depositis at obstru		20 19 18 17 16	15 14 1	3 12 11	10 9 8 7 6	5 4 3 2 1
5. Channel AlterationNo channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present.New embankments present on both banks; and 40 to 80% of stream reach channelized and disrupted.Banks shored with gabion or cement or a0% of the stream channelized and disrupted.2019181716151413121110987654326. Sediment DepositionLittle or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.Some new increase in bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools.Moderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom affected; sediment deposition in pools.Heavy deposits of material increased to substantial sedim to substantial sedim	4. Velocity/Depth Regimes	regimes present (slow- deep, slow shallow, fast-	present if fast missing, scor	t-shallow is e lower than	regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other	velocity/depth regime (usually slow-deep).
dredging present.present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present.present on both banks; and 40 to 80% of stream reach channelized and disrupted.gabion or cement on 80% of the stream channelized and disrupted.2019181716151413121110987654326. Sediment DepositionLittle or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.Some new increase in bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools.Moderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstruction, construction and bends, to substantial sedim		20 19 18 17 16	15 14 1	3 12 11	10 9 8 7 6	5 4 3 2 1
6. Sediment Deposition Little or no enlargement of Islands or point bars and less than 5% of the bottom affected by sediment deposition. Some new increase in bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools. Moderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom affected; sediment deposition in pools. Heavy deposits of material increased on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstruction, construction and bends,	5. Channel Alteration		present, usua of bridge abu evidence of p channelizatio dredging (gre 20 yr.) may b but recent cha	Illy in areas tments; ast n, i.e. ater than e present, annelization	present on both banks; and 40 to 80% of stream reach channelized and disrupted.	channelized and
6. Sediment Deposition Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Little or no enlargement of islands or point bars and less than 5% of the bottom affected; slight deposition in pools. Little or no enlargement from coarse gravel; 5- 30% of the bottom affected; slight deposits at obstruction, construction and bends, to substantial sediment		20 19 18 17 16			10 9 8 7 6	5 4 3 2 1
pools prevalent.	Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by	Some new ind bar informatio from coarse g 30% of the bo affected; sligh	crease in on, mostly pravel; 5- ottom ot	Moderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstruction, construction and bends, moderate depositions of	Heavy deposits of fine material increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment

Parameter	Optimal	Suboptimal	Marginal	Poor
7. Riffle Frequency	Occurrence of riffles relatively frequent;; distance between riffles divided by the width of the stream equals 5 to 7; variety of habitat.		bottom contours provide	
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
8. Channel Flow Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
9. Condition of Banks	Banks stable; no evidence of erosion or bank failure.	Moderately stable; Infrequent, small areas of erosion mostly healed over.	Moderately unstable; up to 60% of banks in reach have areas of erosion.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; on side slopes, 60-100% of bank has erosional scars.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
10. Bank Vegetative Protection	More than 90% of the stream bank surfaces covered by vegetation.	70-90% of the stream bank surfaces covered	50-70% of the stream bank surfaces covered by vegetation.	Less than 50% of the stream bank surfaces covered by vegetation.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
11. Grazing or Other Disruptive Pressure	Vegetative disruption through grazing or mowing is minimal or not	Disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height	Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Disruption of stream bank vegetation is very high; vegetation has
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	12-18 meters; human activities have impacted	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.

TOTAL

Low Gradient Parameters


- 1. Epifaunal Substrate/Available Cover Evaluates the riffle quality relative to stream width and the abundance of dominant substrate materials.
- 2. Pool Substrate Characterization Evaluates the type and condition of the bottom substrate found in the pools.
- 3. Pool Variability Assesses the overall mixture of pool types according to size and depth.
- 4. Sediment Deposition This parameter looks at islands, point bars, or deposition in pools to estimate the extent of sediment deposits.
- 5. Channel Flow Status Evaluates the flow conditions relative to bank height and width and the exposed channel substrate.
- 6. Channel Alteration Evaluates the extent of channelization, dredging, or any other large-scale changes to the shape of the stream channel that has occurred that are detrimental to the habitat.
- 7. Condition of Banks This parameter looks for signs of erosion or the potential for erosion on the stream bank using a bank full delineation.
- 8. Bank Vegetative Protection Assesses the extent of stream bank covered by vegetation which provides stabilization through root coverage.
- 9. Riparian Vegetative Zone Estimates the width of the riparian zone from the edge of the stream bank out through the riparian zone. Assesses the presence of roads, parking lots, lawns, etc., that decreases the riparian zone length.

Multihabitat, Low Gradient Evaluation Form

Waterbody Name:	G	IS Key (YYYYMMDD	-hhmm-	User):						_
Location:										
								1		
Investigators:		Con	npleted	i By:						
Parameter	Optimal	Suboptima	I .	🔄 Ma	irginal			Poo	or .	
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of sta habitat; well-suite full colonization potential; adequa habitat for mainte of populations; presence of addit substrate in the fo new fall, but not y prepared for colonization (may at high end of sca	d for te nance ional orm of et rate le)	removed.	abitat y less ti substr disturt	han ate bed or	Less th habitat is obvic unstabl	ack o bus; su e or la	of hab ibstra acking	ita te
2. Pool Substrate	20 19 18 17 16 Mixture of substrate				- /		5 4		2	1
Characterization	materials, with gravel and firm sand prevalent; root mats and submerged vegetation common. 20 19 18 17 16	Mixture of soft sa mud or clay; mud be dominant; som mats and submer vegetation preser	may e root ged t.	vegetation	tle or n ubmerg 1.	o root	Hard-pa bedroci vegetat	k; no r ion.		at o
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools I deep; very few sh	arge-	Shallow po more prev deep pool	alent th		Majority shallow absent.	or po	ols sn	nal
	20 19 18 17 16	15 14 13 12		10 9		6	54		2	-
4. Sediment Deposition	affected by sediment deposition	Some new increa bar formation, mo from gravel, sand fine sediment; 20- of the bottom affe slight deposition in pools.	stly or 50% cted;	Moderate new grave fine sedim and new b of the both sediment obstruction construction bends; mod deposition prevalent.	el, sand ent on oars; 50 om affe deposit ns, ns, and oderate of poo	or old -80% ected; s at	Heavy materia develop than 80 changir pools a due to s sedime	I, increases ment; % of t ng freq imost substa	eased more he boi uently absen ntial	ba ttor t
	20 19 18 17 16	15 14 13 12	11	10 9	8 7	6	5 4	3	2	.1
5. Channel Flow Status	minimal amount of	Water fills >75% c available channel; <25% of channel substrate is expos	or	Water fills the availat and/or riffl are mostly	e subst	nnel rates	Very litt channe present pools.	and r	nostly	

Parameter	Optimal	Suboptimal	Marginal	Poor			
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely			
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.		Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
	evident; almost all plants allowed to grow naturally.	vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.		Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.			
9. Riparian		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
Vegetative Zone	>18 meters; human activities (i.e. parking lots, roadbeds, clear-	12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.			

Appendix D – Site Map

Site #	Site ID	Stream Name	location
1	APPECR02	Appenzel Creek	Near residential housing, 160m west of the Foundry St. bridge.
2	AQUACR19	Aquashicola Creek	315 meters east from intersection of Upper Smith Gap Rd and Camp Hill Rd
m	BRODCR22	Brodhead Creek	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of PARACR08.
4	BRODCR27	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.
5	BRODCR27R	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.
9	BRODCR30	Brodhead Creek	120 meters southeast of Rt. 191 bridge near intersection of Rt.191 and Rt. 447
7	BRODCR31	Brodhead Creek	55 meters east of Paper Mill Rd near entrance of paper mill
80	BUCKCR01	Buckwha Creek	200 meters east of Chestnut Ridge Rd bridge
6	BUHICR07	Buck Hill Creek	165 meters upstream of Buck Hill Golf Club off of Cresco Rd.
10	BUSHCR07	Bushkill Creek	340 meters north of Route 209 through ROW.
11	BUTZRN01	Butz Run	1.14 miles down Sylvan Cascades Rd from intersection of Rt. 191
12	CHERCR01	Cherry Creek	Located near Edge of the Woods Outfitters 100m from the intersection of 611 and Broad St.
13	CHERCR06	Cherry Creek	25 meters south of bridge on Kemmertown Rd.
14	CHERCR06R	Cherry Creek	25 meters south of bridge on Kemmertown Rd.
15	FOHICR20	Forest Hills Run	40 meters west (upstream) of Lower Swiftwater Rd. bridge
16	INDIRN03	Indian Run	150 meters north of Manor Dr. Bridge upstrem of confluence with Swiftwater Creek.
17	JONACR01	Jonas Creek	150m north of the Laurel Ln cul-de-sac
18	KEIPRN02	Keiper Run	70 meters east of Rt. 903 bridge, upstream of bridge
19	MARSCR11	Marshalls Creek	385 meters north of intersection of Marshalls Creek Rd. and Golfcart Rd.
20	MARSCR18	Marshalls Creek	Next to Minisink Hotel parking lot off of Post Office Rd.
21	MARSCR19	Marshalls Creek	40 meters north of one land bridge on Tallyrand Dr.
22	MCMICR10	McMichael Creek	360 meters downstream of Broad Street bridge.
23	MCMICR22	McMichael Creek	115m south of intersection of Mcilhaney Rd. and Kennel Rd.
24	MCMICR37	McMichael Creek	Hickory Valley State Park 60m southeast from parking area.
25	MIDDCR04	Middle Creek	Downstream of observation deck on Cliff Woodring Trail.
26	MILLCR03	Mill Creek	560m west of instersection of Sand Spring Rd. and Mill Creek Rd.
27	PARACR08	Paradise Creek	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of Brodhead Creek.
28	PARACR09	Paradise Creek	160m north of intersection of Summit Dr. and Hemlock Rd.
29	POCOCR01	Pocono Creek	300m south on Camelback Rd from intersection of Camelback Rd. and Wilke Rd.
30	POCOCR09	Pocono Creek	65m north of Old Mill Rd. bridge.
31	POCOCR14	Pocono Creek	70m south from S. 10th St and Ann St.
32	POHOCR01	Pohopoco Creek	330m southeast from intersection of Merwinsburg Rd. and Burger Hollow Rd.
33	POHOCR29	Pohopoco Creek	700 meters west on Whitey B Ln. from intersection of Whitey B Ln. and Rt. 209.
34	SAMBCR02	Sambo Creek	45m east of Levee Loop Trail, north of John Konawalick Field
35	SAMBCR20	Sambo Creek	220m south of Brushy Mtn. Rd. Downstream of Sambo Creek Lower Reservoir
36	SASPR01	Sand Spring	600m west of Wilke Rd. dead end.
37	SASPR02	Sand Spring	700m west of Wilke Rd. dead end.
38	SWIFCR10	Swiftwater Creek	25m north of Manor Dr. bridge.
39	TOBYCR14	Tobyhanna Creek	50m east of Rt. 115 bridge near Austin T. Blakeslee Natural Area.
40	TUNKCR03	Tunkhannock Creek	160m north of Tunhannok Fishing Association Parking area.

Appendix E – Site List

Data Pages

APPECR02

Location	Near residential housing, 3	160m west of the Foundry St. k	oridge.
Site #	2020-1	Date	4/28/2020
Stream Name	Appenzel Creek	Time	12:50:00 PM
Township	Hamilton	Latitude	40.946838
Habitat Asmt.	210	Longitude	-75.310513

Field Measurements		
Temp C	10.6	
рН	7.62	
Press inHg		
DO Percent	103.1	
DO mg/L	11.46	
Cond (uS/cm)	100	

Macroinvertebrate Metrics		
Total Taxa	29	
Shannon Diversity Index	2.57	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	2.92	
Intolerant individuals (%)	57.8	
Modified Becks Index	31	
Index of Biotic Integrity	84.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.72	
Aluminum mg/L	<0.160	
Calcium mg/L	6.85	
Iron mg/L	0.105	
Magnesium mg/L	2.05	
Hardness CaCO3	25.6	
Chloride mg/L	14.8	
рН	7.4	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.422	
Alkalinity to pH 4.5 mg CaCO3/L	14.7	
Total Dissolved Solids mg/L	77	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

AQUACR19

Location	315 meters east from intersection of Upper Smith Gap Rd and Camp Hill Rd		
Site #	2020-2	Date	4/28/2020
Stream Name	Aquashicola Creek	Time	10:52:00 AM
Township	Eldred	Latitude	40.845611
Habitat Asmt.	152	Longitude	-75.394982

Field Measurements		
Temp C	9.2	
рН	7.78	
Press inHg		
DO Percent	102	
DO mg/L	11.72	
Cond (uS/cm)	144	

Macroinvertebrate Metrics		
Total Taxa	27	
Shannon Diversity Index	2.76	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	2.99	
Intolerant individuals (%)	42.3	
Modified Becks Index	27	
Index of Biotic Integrity	78.3	

Lab Chemistry Analy	sis
Total Organic Carbon mg/L	1.58
Aluminum mg/L	<0.160
Calcium mg/L	17.1
Iron mg/L	0.127
Magnesium mg/L	4.01
Hardness CaCO3	59.2
Chloride mg/L	9.33
РН	7.8
Ammonia as N mg/L	<0.30
Total Kjeldahl N mg/L	<1.25
Nitrate as N mg/L	0.445
Alkalinity to pH 4.5 mg CaCO3/L	46.2
Total Dissolved Solids mg/L	143
Phosphorus as P mg/L	<0.020
Biochemical Oxygen Demand mg/L	<3.00

BRODCR22

Location	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of PARACR08.		
Site #	2020-3	Date	4/30/2020
Stream Name	Brodhead Creek	Time	11:35:00 AM
Township	Stroud	Latitude	41.066523
Habitat Asmt.	205	Longitude	-75.220216

Field Measurements		
Temp C	9.1	
рН	7.19	
Press inHg		
DO Percent	98.2	
DO mg/L	11.31	
Cond (uS/cm)	61	

Macroinvertebrate Metrics		
Total Taxa	34	
Shannon Diversity Index	2.74	
EPT Taxa Richness	18	
Hilsenhoff Biotic Index	3.24	
Intolerant individuals (%)	51.5	
Modified Becks Index	36	
Index of Biotic Integrity	95	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.84	
Aluminum mg/L	<0.160	
Calcium mg/L	4.01	
Iron mg/L	<0.0800	
Magnesium mg/L	1.07	
Hardness CaCO3	14.4	
Chloride mg/L	8.47	
РН	6.7	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.134	
Alkalinity to pH 4.5 mg CaCO3/L	12.6	
Total Dissolved Solids mg/L	40	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR27

Location	170 meters northeast of Pasold Farm Dr. parking area.		
Site #	2020-4	Date	4/29/2020
Stream Name	Brodhead Creek	Time	9:13:00 AM
Township	Barrett	Latitude	41.180941
Habitat Asmt.	208	Longitude	-75.25091

Field Measurements		
Temp C	7.9	
рН	7.05	
Press inHg		
DO Percent	100.1	
DO mg/L	11.88	
Cond (uS/cm)	58	

Macroinvertebrate Metrics		
Total Taxa	31	
Shannon Diversity Index	2.71	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	2.84	
Intolerant individuals (%)	59.1	
Modified Becks Index	32	
Index of Biotic Integrity	97.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.38	
Aluminum mg/L	<0.160	
Calcium mg/L	3.71	
Iron mg/L	<0.0800	
Magnesium mg/L	1	
Hardness CaCO3	13.4	
Chloride mg/L	8.59	
РН	6.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.14	
Alkalinity to pH 4.5 mg CaCO3/L	8.4	
Total Dissolved Solids mg/L	102	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR27R

Location	170 meters northeast of Pasold Farm Dr. parking area.		
Site #	2020-5	Date	4/29/2020
Stream Name	Brodhead Creek	Time	9:13:00 AM
Township	Barrett	Latitude	41.180941
Habitat Asmt.	208	Longitude	-75.25091

Field Measurements		
Temp C	7.9	
рН	7.05	
Press inHg		
DO Percent	100.1	
DO mg/L	11.88	
Cond (uS/cm)	58	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.69	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	2.92	
Intolerant individuals (%)	60.4	
Modified Becks Index	31	
Index of Biotic Integrity	97.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.44	
Aluminum mg/L	<0.160	
Calcium mg/L	3.72	
Iron mg/L	0.0938	
Magnesium mg/L	0.983	
Hardness CaCO3	13.3	
Chloride mg/L	8.53	
рН	6.6	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.138	
Alkalinity to pH 4.5 mg CaCO3/L	6.3	
Total Dissolved Solids mg/L	96	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR30

Location	120 meters southeast of Rt. 191 bridge near intersection of Rt.191 and Rt. 447		
Site #	2020-6	Date	4/21/2020
Stream Name	Brodhead Creek	Time	9:11:00 AM
Township	Stroud	Latitude	41.036093
Habitat Asmt.	185	Longitude	-75.209176

Field Measurements		
Temp C	6.65	
рН	7.3	
Press inHg		
DO Percent	98.75	
DO mg/L	12.09	
Cond (uS/cm)	102	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.5	
EPT Taxa Richness	13	
Hilsenhoff Biotic Index	3.12	
Intolerant individuals (%)	56.1	
Modified Becks Index	21	
Index of Biotic Integrity	87.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.68	
Aluminum mg/L	<0.160	
Calcium mg/L	5.89	
Iron mg/L	<0.0800	
Magnesium mg/L	1.53	
Hardness CaCO3	21	
Chloride mg/L	18	
рН	7.3	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.238	
Alkalinity to pH 4.5 mg CaCO3/L	12.9	
Total Dissolved Solids mg/L	55	
Phosphorus as P mg/L	0.02	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR31

Location	55 meters east of Paper Mill Rd near entrance of paper mill		
Site #	2020-7	Date	5/5/2020
Stream Name	Brodhead Creek	Time	9:23:00 AM
Township	Smithfield	Latitude	40.998746
Habitat Asmt.	167	Longitude	-75.143353

Field Measurements		
Temp C	10.05	
рН	7.54	
Press inHg		
DO Percent	101.95	
DO mg/L	11.48	
Cond (uS/cm)	137	

Macroinvertebrate Metrics		
Total Taxa	27	
Shannon Diversity Index	2.79	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	4.23	
Intolerant individuals (%)	23.8	
Modified Becks Index	11	
Index of Biotic Integrity	70.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.88	
Aluminum mg/L	<0.160	
Calcium mg/L	9.78	
Iron mg/L	0.0907	
Magnesium mg/L	1.82	
Hardness CaCO3	31.9	
Chloride mg/L	20.8	
РН	6.7	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.317	
Alkalinity to pH 4.5 mg CaCO3/L	21.1	
Total Dissolved Solids mg/L	91	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BUCKCR01

Location	200 meters east of Chestnut Ridge Rd bridge		
Site #	2020-8	Date	4/28/2020
Stream Name	Buckwha Creek	Time	10:20:00 AM
Township	Eldred	Latitude	40.847275
Habitat Asmt.	180	Longitude	-75.451532

Field Measurements		
Temp C	7.8	
рН	7.36	
Press inHg		
DO Percent	102.9	
DO mg/L	12.24	
Cond (uS/cm)	95	

Macroinvertebrate Metrics		
Total Taxa	28	
Shannon Diversity Index	2.46	
EPT Taxa Richness	18	
Hilsenhoff Biotic Index	3.17	
Intolerant individuals (%)	59.6	
Modified Becks Index	27	
Index of Biotic Integrity	81.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.16	
Aluminum mg/L	<0.160	
Calcium mg/L	7.9	
Iron mg/L	0.0955	
Magnesium mg/L	2.37	
Hardness CaCO3	29.5	
Chloride mg/L	9.38	
На	7.2	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	1.63	
Alkalinity to pH 4.5 mg CaCO3/L	14.7	
Total Dissolved Solids mg/L	55	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BUHICR07

Location	165 meters upstream of Buck Hill Golf Club off of Cresco Rd.		
Site #	2020-9	Date	4/29/2020
Stream Name	Buck Hill Creek	Time	8:32:00 AM
Township	Barrett	Latitude	41.194403
Habitat Asmt.	226	Longitude	-75.281357

Field Measurements		
Temp C	6.4	
рН	6.66	
Press inHg		
DO Percent	98.73	
DO mg/L	12.15	
Cond (uS/cm)	38	

Macroinvertebrate Metrics		
Total Taxa	26	
Shannon Diversity Index	2.31	
EPT Taxa Richness	20	
Hilsenhoff Biotic Index	1.45	
Intolerant individuals (%)	85.1	
Modified Becks Index	42	
Index of Biotic Integrity	93.3	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.11	
Aluminum mg/L	<0.160	
Calcium mg/L	2.61	
Iron mg/L	<0.0800	
Magnesium mg/L	0.672	
Hardness CaCO3	9.28	
Chloride mg/L	5.09	
рН	6.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.0885	
Alkalinity to pH 4.5 mg CaCO3/L	6.3	
Total Dissolved Solids mg/L	65	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BUSHCR07

Location	340 meters north of Route 209 through ROW.		
Site #	2020-10	Date	4/30/2020
Stream Name	Bushkill Creek	Time	8:25:00 AM
Township	Middle Smithfield	Latitude	41.084861
Habitat Asmt.	211	Longitude	-75.019417

Field Measurements		
Temp C	9.7	
рН	6.85	
Press inHg		
DO Percent	97.6	
DO mg/L	11.09	
Cond (uS/cm)	49	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	2.43	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	3.56	
Intolerant individuals (%)	54.4	
Modified Becks Index	19	
Index of Biotic Integrity	81.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	3.7	
Aluminum mg/L	<0.160	
Calcium mg/L	3.45	
Iron mg/L	0.107	
Magnesium mg/L	0.956	
Hardness CaCO3	12.5	
Chloride mg/L	5.83	
рН	6.3	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	<0.0500	
Alkalinity to pH 4.5 mg CaCO3/L	8.4	
Total Dissolved Solids mg/L	61	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

BUTZRN01

Location	1.14 miles down Sylvan Cascades Rd from intersection of Rt. 191		
Site #	2020-11	Date	4/29/2020
Stream Name	Butz Run	Time	10:43:00 AM
Township	Paradise	Latitude	41.076071
Habitat Asmt.	219	Longitude	-75.235002

Field Measurements		
Temp C	9.2	
рН	7.4	
Press inHg		
DO Percent	100.5	
DO mg/L	11.57	
Cond (uS/cm)	94	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	2.39	
EPT Taxa Richness	14	
Hilsenhoff Biotic Index	2.62	
Intolerant individuals (%)	57.9	
Modified Becks Index	27	
Index of Biotic Integrity	75.7	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.6	
Aluminum mg/L	<0.160	
Calcium mg/L	7.16	
Iron mg/L	0.1	
Magnesium mg/L	1.46	
Hardness CaCO3	23.9	
Chloride mg/L	12.1	
РН	6.9	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.197	
Alkalinity to pH 4.5 mg CaCO3/L	16.8	
Total Dissolved Solids mg/L	87	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

CHERCR01

Location	Located near Edge of the Woods Outfitters 100m from the intersection of 611 and Broad St.		
Site #	2020-12	Date	4/21/2020
Stream Name	Cherry Creek	Time	10:20:00 AM
Township	Delaware Water Gap	Latitude	40.984712
Habitat Asmt.	167	Longitude	-75.145848

Field Measurements		
Temp C	7.9	
рН	8	
Press inHg		
DO Percent	96.2	
DO mg/L	11.4	
Cond (uS/cm)	281	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.43	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.86	
Intolerant individuals (%)	60.2	
Modified Becks Index	19	
Index of Biotic Integrity	72	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.28	
Aluminum mg/L	<0.160	
Calcium mg/L	26.7	
Iron mg/L	0.161	
Magnesium mg/L	5.53	
Hardness CaCO3	89.5	
Chloride mg/L	8.2	
РН	7.8	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.273	
Alkalinity to pH 4.5 mg CaCO3/L	68.6	
Total Dissolved Solids mg/L	161	
Phosphorus as P mg/L	0.029	
Biochemical Oxygen Demand mg/L	<3.00	

CHERCR06

Location	25 meters south of bridge on Kemmertown Rd.		
Site #	2020-13	Date	4/29/2020
Stream Name	Cherry Creek	Time	11:40:00 AM
Township	Hamilton	Latitude	40.93657
Habitat Asmt.	153	Longitude	-75.252769

Field Measurements		
Temp C	11	
рН	8.54	
Press inHg		
DO Percent	112.9	
DO mg/L	12.43	
Cond (uS/cm)	150	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	3.54	
EPT Taxa Richness	15	
Hilsenhoff Biotic Index	3.49	
Intolerant individuals (%)	51.5	
Modified Becks Index	16	
Index of Biotic Integrity	73	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.46	
Aluminum mg/L	<0.160	
Calcium mg/L	21.5	
Iron mg/L	0.126	
Magnesium mg/L	4.4	
Hardness CaCO3	71.7	
Chloride mg/L	4.48	
рН	8.4	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.228	
Alkalinity to pH 4.5 mg CaCO3/L	54.6	
Total Dissolved Solids mg/L	157	
Phosphorus as P mg/L	0.021	
Biochemical Oxygen Demand mg/L	<3.00	

CHERCR06R

Location	25 meters south of bridge on Kemmertown Rd.		
Site #	2020-14	Date	4/29/2020
Stream Name	Cherry Creek	Time	11:40:00 AM
Township	Hamilton	Latitude	40.93657
Habitat Asmt.	153	Longitude	-75.252769

Field Measurements		
Temp C	11	
рН	8.54	
Press inHg		
DO Percent	112.9	
DO mg/L	12.43	
Cond (uS/cm)	150	

Macroinvertebrate Metrics		
Total Taxa	23	
Shannon Diversity Index	1.83	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.5	
Intolerant individuals (%)	71.5	
Modified Becks Index	12	
Index of Biotic Integrity	67.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.27	
Aluminum mg/L	<0.160	
Calcium mg/L	21.2	
Iron mg/L	0.193	
Magnesium mg/L	4.35	
Hardness CaCO3	70.9	
Chloride mg/L	4.54	
рН	8.2	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.229	
Alkalinity to pH 4.5 mg CaCO3/L	54.6	
Total Dissolved Solids mg/L	272	
Phosphorus as P mg/L	0.026	
Biochemical Oxygen Demand mg/L	<3.00	

INDIRN03

Location	150 meters north of Manor Dr. Bridge upstrem of confluence with Swiftwater Creek.		
Site #	2020-16	Date	4/22/2020
Stream Name	Indian Run	Time	11:00:00 AM
Township	Pocono	Latitude	41.10221
Habitat Asmt.	217	Longitude	-75.346358

Field Measurements		
Temp C	6.5	
рН	7.79	
Press inHg		
DO Percent	98.4	
DO mg/L	12.11	
Cond (uS/cm)	199	

Macroinvertebrate Metrics		
Total Taxa	29	
Shannon Diversity Index	2.47	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	3.5	
Intolerant individuals (%)	47.4	
Modified Becks Index	28	
Index of Biotic Integrity	78.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	0.62	
Aluminum mg/L	<0.160	
Calcium mg/L	9.41	
Iron mg/L	<0.0800	
Magnesium mg/L	2.7	
Hardness CaCO3	34.6	
Chloride mg/L	46.3	
РН	7.1	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.548	
Alkalinity to pH 4.5 mg CaCO3/L	12.9	
Total Dissolved Solids mg/L	108	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

JONACR01

Location	150m north of the Laurel Ln cul-de-sac		
Site #	2020-17	Date	4/20/2020
Stream Name	Jonas Creek	Time	11:40:00 AM
Township	Polk	Latitude	40.97567
Habitat Asmt.	221	Longitude	-75.507843

Field Measurements		
Temp C	7.9	
рН	6.96	
Press inHg		
DO Percent	95.7	
DO mg/L	11.36	
Cond (uS/cm)	92	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.53	
EPT Taxa Richness	15	
Hilsenhoff Biotic Index	2.82	
Intolerant individuals (%)	59.1	
Modified Becks Index	30	
Index of Biotic Integrity	79.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	0.57	
Aluminum mg/L	<0.160	
Calcium mg/L	3.61	
Iron mg/L	<0.0800	
Magnesium mg/L	1.47	
Hardness CaCO3	15.1	
Chloride mg/L	19.8	
рН	6.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.678	
Alkalinity to pH 4.5 mg CaCO3/L	6.4	
Total Dissolved Solids mg/L	51	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

KEIPRN02

Location	70 meters east of Rt. 903 bridge, upstream of bridge		
Site #	2020-18	Date	4/20/2020
Stream Name	Keiper Run	Time	11:40:00 AM
Township	Tunkhannock	Latitude	41.053224
Habitat Asmt.	179	Longitude	-75.552658

Field Measurements		
Temp C	6.2	
рН	6.71	
Press inHg		
DO Percent	91.4	
DO mg/L	11.31	
Cond (uS/cm)	99	

Macroinvertebrate Metrics		
Total Taxa	14	
Shannon Diversity Index	1.18	
EPT Taxa Richness	4	
Hilsenhoff Biotic Index	5.63	
Intolerant individuals (%)	4.7	
Modified Becks Index	14	
Index of Biotic Integrity	33.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.05	
Aluminum mg/L	<0.160	
Calcium mg/L	3.59	
Iron mg/L	0.126	
Magnesium mg/L	1.08	
Hardness CaCO3	13.4	
Chloride mg/L	22.2	
рН	6.7	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.302	
Alkalinity to pH 4.5 mg CaCO3/L	6.4	
Total Dissolved Solids mg/L	149	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

FOHIRN20

Location	40 meters west (upstream) of Lower Swiftwater Rd. bridge		
Site #	2020-15	Date	5/4/2020
Stream Name	Forest Hills Run	Time	9:45:00 AM
Township	Paradise	Latitude	41.101108
Habitat Asmt.	212	Longitude	-75.272583

Field Measurements		
Temp C	11.3	
рН	7.59	
Press inHg		
DO Percent	98.4	
DO mg/L	10.77	
Cond (uS/cm)	222	

Macroinvertebrate Metrics		
Total Taxa	20	
Shannon Diversity Index	2.21	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.88	
Intolerant individuals (%)	50.3	
Modified Becks Index	18	
Index of Biotic Integrity	66	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.8	
Aluminum mg/L	<0.160	
Calcium mg/L	11.3	
Iron mg/L	<0.0800	
Magnesium mg/L	2.99	
Hardness CaCO3	40.4	
Chloride mg/L	48.5	
рН	6.8	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.367	
Alkalinity to pH 4.5 mg CaCO3/L	23.2	
Total Dissolved Solids mg/L	96	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MARSCR11

Location	385 meters north of intersection of Marshalls Creek Rd. and Golfcart Rd.		
Site #	2020-19	Date	4/30/2020
Stream Name	Marshalls Creek	Time	10:15:00 AM
Township	Middle Smithfield	Latitude	41.054246
Habitat Asmt.	211	Longitude	-75.13672

Field Measurements		
Temp C	9.1	
рН	7.21	
Press inHg		
DO Percent	98.4	
DO mg/L	11.34	
Cond (uS/cm)	78	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	2.4	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	3.28	
Intolerant individuals (%)	50.5	
Modified Becks Index	22	
Index of Biotic Integrity	74.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.91	
Aluminum mg/L	<0.160	
Calcium mg/L	6.39	
Iron mg/L	<0.0800	
Magnesium mg/L	1.41	
Hardness CaCO3	21.8	
Chloride mg/L	8.87	
рН	6.8	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.229	
Alkalinity to pH 4.5 mg CaCO3/L	8.4	
Total Dissolved Solids mg/L	69	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MARSCR18

Location	Next to Minisink Hotel parking lot off of Post Office Rd.		
Site #	2020-20	Date	4/21/2020
Stream Name	Marshalls Creek	Time	10:44:00 AM
Township	Smithfield	Latitude	40.998555
Habitat Asmt.	189	Longitude	-75.139952

Field Measurements		
Temp C	8.06	
рН	7.74	
Press inHg		
DO Percent	98.1	
DO mg/L	11.6	
Cond (uS/cm)	167	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.67	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	3.65	
Intolerant individuals (%)	48.4	
Modified Becks Index	28	
Index of Biotic Integrity	92.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.04	
Aluminum mg/L	<0.160	
Calcium mg/L	17.5	
Iron mg/L	0.121	
Magnesium mg/L	2.25	
Hardness CaCO3	52.9	
Chloride mg/L	19.2	
рН	7.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.202	
Alkalinity to pH 4.5 mg CaCO3/L	34.3	
Total Dissolved Solids mg/L	84	
Phosphorus as P mg/L	0.025	
Biochemical Oxygen Demand mg/L	<3.00	

MARSCR19

Location	40 meters north of one land bridge on Tallyrand Dr.		
Site #	2020-21	Date	4/30/2020
Stream Name	Marshalls Creek	Time	9:30:00 AM
Township	Middle Smithfield	Latitude	41.108419
Habitat Asmt.	207	Longitude	-75.155693

Field Measurements		
Temp C	8.7	
рН	7.19	
Press inHg		
DO Percent	93.2	
DO mg/L	10.85	
Cond (uS/cm)	45	

Macroinvertebrate Metrics		
Total Taxa	19	
Shannon Diversity Index	1.64	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	1.74	
Intolerant individuals (%)	71.7	
Modified Becks Index	16	
Index of Biotic Integrity	66.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.65	
Aluminum mg/L	<0.160	
Calcium mg/L	4.13	
Iron mg/L	0.0915	
Magnesium mg/L	0.821	
Hardness CaCO3	13.7	
Chloride mg/L	3.3	
РН	6.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	<0.0500	
Alkalinity to pH 4.5 mg CaCO3/L	8.4	
Total Dissolved Solids mg/L	66	
Phosphorus as P mg/L	0.022	
Biochemical Oxygen Demand mg/L	<3.00	

MCMICR10

Location	360 meters downstream of Broad Street bridge.		
Site #	2020-22	Date	5/5/2020
Stream Name	McMichael Creek	Time	9:56:00 AM
Township	Stroudsburg	Latitude	40.98724
Habitat Asmt.	166	Longitude	-75.186808

Field Measurements		
Temp C	10.4	
рН	7.63	
Press inHg		
DO Percent	103.6	
DO mg/L	11.57	
Cond (uS/cm)	159	

Macroinvertebrate Metrics		
Total Taxa	28	
Shannon Diversity Index	2.64	
EPT Taxa Richness	15	
Hilsenhoff Biotic Index	3.67	
Intolerant individuals (%)	37.5	
Modified Becks Index	25	
Index of Biotic Integrity	87.3	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2	
Aluminum mg/L	<0.160	
Calcium mg/L	11.8	
Iron mg/L	0.128	
Magnesium mg/L	2.24	
Hardness CaCO3	38.7	
Chloride mg/L	24	
рН	6.8	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.394	
Alkalinity to pH 4.5 mg CaCO3/L	23.2	
Total Dissolved Solids mg/L	139	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MCMICR22

Location	115m south of intersection of Mcilhaney Rd. and Kennel Rd.		
Site #	2020-23	Date	4/28/2020
Stream Name	McMichael Creek	Time	11:30:00 AM
Township	Chestnuthill	Latitude	40.930902
Habitat Asmt.	215	Longitude	-75.363567

Field Measurements		
Temp C	10.1	
рН	7.42	
Press inHg		
DO Percent	105.23	
DO mg/L	11.84	
Cond (uS/cm)	69	

Macroinvertebrate Metrics		
Total Taxa	36	
Shannon Diversity Index	3.08	
EPT Taxa Richness	18	
Hilsenhoff Biotic Index	1.75	
Intolerant individuals (%)	72.6	
Modified Becks Index	29	
Index of Biotic Integrity	92.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.22	
Aluminum mg/L	<0.160	
Calcium mg/L	4.63	
Iron mg/L	<0.0800	
Magnesium mg/L	1.61	
Hardness CaCO3	18.2	
Chloride mg/L	10.6	
РН	7.1	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.434	
Alkalinity to pH 4.5 mg CaCO3/L	10.5	
Total Dissolved Solids mg/L	83	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MCMICR37

Location	Hickory Valley State Park 60m southeast from parking area.		
Site #	2020-24	Date	4/21/2020
Stream Name	McMichael Creek	Time	11:00:00 AM
Township	Stroud	Latitude	40.962041
Habitat Asmt.	184	Longitude	-75.236508

Field Measurements		
Temp C	7.4	
рН	7.68	
Press inHg		
DO Percent	98.03	
DO mg/L	11.78	
Cond (uS/cm)	128	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	2.4	
EPT Taxa Richness	13	
Hilsenhoff Biotic Index	4.37	
Intolerant individuals (%)	44.9	
Modified Becks Index	17	
Index of Biotic Integrity	78.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.32	
Aluminum mg/L	<0.160	
Calcium mg/L	11.1	
Iron mg/L	0.0829	
Magnesium mg/L	2.16	
Hardness CaCO3	36.6	
Chloride mg/L	15.5	
На	7.5	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.527	
Alkalinity to pH 4.5 mg CaCO3/L	25.7	
Total Dissolved Solids mg/L	84	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MIDDCR04

Location	Downstream of observation deck on Cliff Woodring Trail.		
Site #	2020-25	Date	4/28/2020
Stream Name	Middle Creek	Time	9:04:00 AM
Township	Polk	Latitude	40.905822
Habitat Asmt.	211	Longitude	-75.496614

Field Measurements		
Temp C	6.5	
рН	7.33	
Press inHg		
DO Percent	100.3	
DO mg/L	12.19	
Cond (uS/cm)	75	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.83	
EPT Taxa Richness	19	
Hilsenhoff Biotic Index	2.42	
Intolerant individuals (%)	62.1	
Modified Becks Index	40	
Index of Biotic Integrity	93.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.2	
Aluminum mg/L	<0.160	
Calcium mg/L	4.43	
Iron mg/L	<0.0800	
Magnesium mg/L	1.89	
Hardness CaCO3	18.8	
Chloride mg/L	11.4	
рН	7.1	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.906	
Alkalinity to pH 4.5 mg CaCO3/L	8.4	
Total Dissolved Solids mg/L	38	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

MILLCR03

Location	560m west of instersection of Sand Spring Rd. and Mill Creek Rd.		
Site #	2020-26	Date	4/29/2020
Stream Name	Mill Creek	Time	9:50:00 AM
Township	Barrett	Latitude	41.163201
Habitat Asmt.	211	Longitude	-75.251528

Field Measurements		
Temp C	7.4	
рН	7.21	
Press inHg		
DO Percent	99.9	
DO mg/L	12.01	
Cond (uS/cm)	75	

Macroinvertebrate Metrics		
Total Taxa	28	
Shannon Diversity Index	2.35	
EPT Taxa Richness	18	
Hilsenhoff Biotic Index	2.01	
Intolerant individuals (%)	67.6	
Modified Becks Index	46	
Index of Biotic Integrity	90	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.21	
Aluminum mg/L	<0.160	
Calcium mg/L	4.17	
Iron mg/L	<0.0800	
Magnesium mg/L	1.02	
Hardness CaCO3	14.6	
Chloride mg/L	12.4	
рН	6.9	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.173	
Alkalinity to pH 4.5 mg CaCO3/L	10.5	
Total Dissolved Solids mg/L	69	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

PARACR08

Location	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of Brodhead Creek.		
Site #	2020-27	Date	4/30/2020
Stream Name	Paradise Creek	Time	11:15:00 AM
Township	Stroud	Latitude	41.066498
Habitat Asmt.	214	Longitude	-75.221395

Field Measurements		
Temp C	9.26	
рН	7.41	
Press inHg		
DO Percent	99.6	
DO mg/L	11.43	
Cond (uS/cm)	152	

Macroinvertebrate Metrics		
Total Taxa	30	
Shannon Diversity Index	2.45	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	2.72	
Intolerant individuals (%)	60.2	
Modified Becks Index	32	
Index of Biotic Integrity	95.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.44	
Aluminum mg/L	<0.160	
Calcium mg/L	7.45	
Iron mg/L	<0.0800	
Magnesium mg/L	1.92	
Hardness CaCO3	26.5	
Chloride mg/L	30.6	
На	6.8	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.358	
Alkalinity to pH 4.5 mg CaCO3/L	14.7	
Total Dissolved Solids mg/L	103	
Phosphorus as P mg/L	0.02	
Biochemical Oxygen Demand mg/L	<3.00	

PARACR09

Location	160m north of intersection of Summit Dr. and Hemlock Rd.		
Site #	2020-28	Date	5/4/2020
Stream Name	Paradise Creek	Time	9:09:00 AM
Township	Paradise	Latitude	41.111957
Habitat Asmt.	206	Longitude	-75.271678

Field Measurements		
Temp C	10.3	
рН	7.22	
Press inHg		
DO Percent	97.6	
DO mg/L	10.93	
Cond (uS/cm)	123	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	1.68	
EPT Taxa Richness	14	
Hilsenhoff Biotic Index	4.91	
Intolerant individuals (%)	14.4	
Modified Becks Index	24	
Index of Biotic Integrity	58.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.61	
Aluminum mg/L	<0.160	
Calcium mg/L	6.12	
Iron mg/L	<0.0800	
Magnesium mg/L	1.54	
Hardness CaCO3	21.6	
Chloride mg/L	24.5	
рН	6.6	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.446	
Alkalinity to pH 4.5 mg CaCO3/L	10.6	
Total Dissolved Solids mg/L	69	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

POCOCR01

Location	300m south on Camelback Rd from intersection of Camelback Rd. and Wilke Rd.		
Site #	2020-29	Date	4/22/2020
Stream Name	Pocono Creek	Time	12:00:00 PM
Township	Pocono	Latitude	41.058983
Habitat Asmt.	220	Longitude	-75.34886

Field Measurements		
Temp C	6.5	
рН	7.47	
Press inHg		
DO Percent	98.5	
DO mg/L	12.11	
Cond (uS/cm)	100	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	2.2	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	1.9	
Intolerant individuals (%)	72.9	
Modified Becks Index	26	
Index of Biotic Integrity	76.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.9	
Aluminum mg/L	<0.160	
Calcium mg/L	3.96	
Iron mg/L	0.0872	
Magnesium mg/L	0.977	
Hardness CaCO3	13.9	
Chloride mg/L	21.1	
РН	6.9	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.125	
Alkalinity to pH 4.5 mg CaCO3/L	8.6	
Total Dissolved Solids mg/L	97	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

POCOCR09

Location	65m north of Old Mill Rd. bridge.		
Site #	2020-30	Date	4/22/2020
Stream Name	Pocono Creek	Time	12:44:00 PM
Township	Pocono	Latitude	41.039252
Habitat Asmt.	210	Longitude	-75.309729

Field Measurements		
Temp C	7.8	
рН	7.43	
Press inHg		
DO Percent	99	
DO mg/L	11.77	
Cond (uS/cm)	168	

Macroinvertebrate Metrics		
Total Taxa	30	
Shannon Diversity Index	2.74	
EPT Taxa Richness	20	
Hilsenhoff Biotic Index	2.99	
Intolerant individuals (%)	60.6	
Modified Becks Index	37	
Index of Biotic Integrity	90.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.45	
Aluminum mg/L	<0.160	
Calcium mg/L	7.87	
Iron mg/L	<0.0800	
Magnesium mg/L	1.97	
Hardness CaCO3	27.8	
Chloride mg/L	30.6	
рН	6.9	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.262	
Alkalinity to pH 4.5 mg CaCO3/L	8.6	
Total Dissolved Solids mg/L	124	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

POCOCR14

Location	70m south from S. 10th St and Ann St.		
Site #	2020-31	Date	4/29/2020
Stream Name	Pocono Creek	Time	12:59:00 PM
Township	Stroudsburg	Latitude	40.981165
Habitat Asmt.	217	Longitude	-75.197009

Field Measurements		
Temp C	10.6	
рН	7.89	
Press inHg		
DO Percent	106.8	
DO mg/L	118.73	
Cond (uS/cm)	193	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	2.54	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	3.89	
Intolerant individuals (%)	38.1	
Modified Becks Index	20	
Index of Biotic Integrity	78.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.29	
Aluminum mg/L	<0.160	
Calcium mg/L	11	
Iron mg/L	0.0937	
Magnesium mg/L	2.41	
Hardness CaCO3	37.4	
Chloride mg/L	36.5	
рН	7.6	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.301	
Alkalinity to pH 4.5 mg CaCO3/L	21	
Total Dissolved Solids mg/L	125	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

POHOCR01

Location	330m southeast from intersection of Merwinsburg Rd. and Burger Hollow Rd.		
Site #	2020-32	Date	4/28/2020
Stream Name	Pohopoco Creek	Time	8:21:00 AM
Township	Chestnuthill	Latitude	40.961684
Habitat Asmt.	225	Longitude	-75.465

Field Measurements		
Temp C	7	
рН	7.03	
Press inHg		
DO Percent	98.1	
DO mg/L	11.9	
Cond (uS/cm)	123	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.58	
EPT Taxa Richness	19	
Hilsenhoff Biotic Index	2.82	
Intolerant individuals (%)	61.9	
Modified Becks Index	32	
Index of Biotic Integrity	88.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	0.77	
Aluminum mg/L	<0.160	
Calcium mg/L	5.61	
Iron mg/L	<0.0800	
Magnesium mg/L	2.57	
Hardness CaCO3	24.6	
Chloride mg/L	26	
РН	7	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	1	
Alkalinity to pH 4.5 mg CaCO3/L	10.5	
Total Dissolved Solids mg/L	74	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

POHOCR29

Location	700 meters west on Whitey B Ln. from intersection of Whitey B Ln. and Rt. 209.		
Site #	2020-33	Date	4/28/2020
Stream Name	Pohopoco Creek	Time	9:34:00 AM
Township	Polk	Latitude	40.89951
Habitat Asmt.	225	Longitude	-75.506215

Field Measurements		
Temp C	7.53	
рН	7.17	
Press inHg		
DO Percent	99.07	
DO mg/L	11.87	
Cond (uS/cm)	114	

Macroinvertebrate Metrics		
Total Taxa	27	
Shannon Diversity Index	2.45	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	3.34	
Intolerant individuals (%)	58.9	
Modified Becks Index	27	
Index of Biotic Integrity	92.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.24	
Aluminum mg/L	<0.160	
Calcium mg/L	6.85	
Iron mg/L	0.0925	
Magnesium mg/L	2.53	
Hardness CaCO3	27.5	
Chloride mg/L	18.4	
РН	6.9	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	1.3	
Alkalinity to pH 4.5 mg CaCO3/L	12.6	
Total Dissolved Solids mg/L	94	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

SAMBCR02

Location	45m east of Levee Loop Trail, north of John Konawalick Field		
Site #	2020-34	Date	4/21/2020
Stream Name	Sambo Creek	Time	8:15:00 AM
Township	East Stroudsburg	Latitude	41.009419
Habitat Asmt.	167	Longitude	-75.190549

Field Measurements		
Temp C	7.3	
рН	7.36	
Press inHg		
DO Percent	94.9	
DO mg/L	11.42	
Cond (uS/cm)	207	

Macroinvertebrate Metrics	
Total Taxa	20
Shannon Diversity Index	1.85
EPT Taxa Richness	9
Hilsenhoff Biotic Index	4.79
Intolerant individuals (%)	14
Modified Becks Index	11
Index of Biotic Integrity	47.1

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.38	
Aluminum mg/L	<0.160	
Calcium mg/L	18.9	
Iron mg/L	0.12	
Magnesium mg/L	2.33	
Hardness CaCO3	56.8	
Chloride mg/L	27.4	
рН	7.6	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.455	
Alkalinity to pH 4.5 mg CaCO3/L	51.5	
Total Dissolved Solids mg/L	133	
Phosphorus as P mg/L	0.041	
Biochemical Oxygen Demand mg/L	<3.00	

SAMBCR20

Location	220m south of Brushy Mtn. Rd. Downstream of Sambo Creek Lower Reservoir		
Site #	2020-35	Date	5/5/2020
Stream Name	Sambo Creek	Time	8:12:00 AM
Township	Smithfield	Latitude	41.042227
Habitat Asmt.	212	Longitude	-75.184488

Field Measurements		
Temp C	11.9	
рН	7.36	
Press inHg		
DO Percent	99.6	
DO mg/L	10.75	
Cond (uS/cm)	105	

Macroinvertebrate Metrics	
Total Taxa	15
Shannon Diversity Index	2.38
EPT Taxa Richness	9
Hilsenhoff Biotic Index	3.83
Intolerant individuals (%)	49.1
Modified Becks Index	12
Index of Biotic Integrity	57

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.52	
Aluminum mg/L	<0.160	
Calcium mg/L	7.32	
Iron mg/L	<0.0800	
Magnesium mg/L	1.76	
Hardness CaCO3	25.5	
Chloride mg/L	15.8	
РН	6.3	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.178	
Alkalinity to pH 4.5 mg CaCO3/L	12.7	
Total Dissolved Solids mg/L	66	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

SASPR01

Location	600m west of Wilke Rd. dead end.		
Site #	2020-36	Date	5/4/2020
Stream Name	Sand Spring	Time	11:50:00 AM
Township	Jackson	Latitude	41.061595
Habitat Asmt.	173	Longitude	-75.37459

Field Measurements		
Temp C	13.9	
рН	6.4	
Press inHg		
DO Percent	94.9	
DO mg/L	9.81	
Cond (uS/cm)	21	

Macroinvertebrate Metrics		
Total Taxa	12	
Shannon Diversity Index	2.01	
EPT Taxa Richness	7	
Hilsenhoff Biotic Index	3.58	
Intolerant individuals (%)	28.1	
Modified Becks Index	14	
Index of Biotic Integrity	48.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
На		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

SASPR02

Location	700m west of Wilke Rd. dead end.		
Site #	2020-37	Date	5/4/2020
Stream Name	Sand Spring	Time	11:15:00 AM
Township	Jackson	Latitude	41.061234
Habitat Asmt.	172	Longitude	-75.375798

Field Measurements		
Temp C	13.8	
рН	6.25	
Press inHg		
DO Percent	94.4	
DO mg/L	9.77	
Cond (uS/cm)	20	

Macroinvertebrate Metrics		
Total Taxa	11	
Shannon Diversity Index	1.27	
EPT Taxa Richness	4	
Hilsenhoff Biotic Index	3.51	
Intolerant individuals (%)	55.3	
Modified Becks Index	16	
Index of Biotic Integrity	47.7	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
РН		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

SWIFCR10

Location	25m north of Manor Dr. bridge.		
Site #	2020-38	Date	4/22/2020
Stream Name	Swiftwater Creek	Time	11:27:00 AM
Township	Pocono	Latitude	41.100894
Habitat Asmt.	196	Longitude	-75.346355

Field Measurements		
Temp C	5.6	
рН	7.43	
Press inHg		
DO Percent	96.8	
DO mg/L	12.15	
Cond (uS/cm)	134	

Macroinvertebrate Metrics		
Total Taxa	31	
Shannon Diversity Index	3	
EPT Taxa Richness	19	
Hilsenhoff Biotic Index	3.22	
Intolerant individuals (%)	54.5	
Modified Becks Index	44	
Index of Biotic Integrity	90.3	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	0.82	
Aluminum mg/L	<0.160	
Calcium mg/L	5.81	
Iron mg/L	<0.0800	
Magnesium mg/L	1.73	
Hardness CaCO3	21.6	
Chloride mg/L	35.5	
рН	7.6	
Ammonia as N mg/L	<0.30	
Total Kjeldahl N mg/L	<1.25	
Nitrate as N mg/L	0.526	
Alkalinity to pH 4.5 mg CaCO3/L	15	
Total Dissolved Solids mg/L	95	
Phosphorus as P mg/L	<0.020	
Biochemical Oxygen Demand mg/L	<3.00	

TOBYCR14

Location	50m east of Rt. 115 bridge near Austin T. Blakeslee Natural Area.			
Site #	2020-39	Date	4/20/2020	
Stream Name	Tobyhanna Creek	Time	10:00:00 AM	
Township	Tobyhanna	Latitude	41.082791	
Habitat Asmt.	193	Longitude	-75.583083	

Field Measurements			
Temp C	7.6		
рН	7.1		
Press inHg			
DO Percent	94		
DO mg/L	11.23		
Cond (uS/cm)	136		

Macroinvertebrate Metrics			
Total Taxa	27		
Shannon Diversity Index	2.8		
EPT Taxa Richness	13		
Hilsenhoff Biotic Index	3.67		
Intolerant individuals (%)	49.7		
Modified Becks Index	19		
Index of Biotic Integrity	86.4		

Lab Chemistry Analysis			
Total Organic Carbon mg/L	5.43		
Aluminum mg/L	<0.160		
Calcium mg/L	5.72		
Iron mg/L	0.242		
Magnesium mg/L	1.25		
Hardness CaCO3	19.4		
Chloride mg/L	31.7		
РН	6.6		
Ammonia as N mg/L	<0.30		
Total Kjeldahl N mg/L	<1.25		
Nitrate as N mg/L	0.17		
Alkalinity to pH 4.5 mg CaCO3/L	6.4		
Total Dissolved Solids mg/L	72		
Phosphorus as P mg/L	0.021		
Biochemical Oxygen Demand mg/L	<3.00		

TUNKCR03

Location	160m north of Tunhannok Fishing Association Parking area.			
Site #	2020-40	Date	4/20/2020	
Stream Name	Tunkhannock Creek	Time	10:30:00 AM	
Township	Tunkhannock	Latitude	41.059541	
Habitat Asmt.	213	Longitude	-75.552735	

Field Measurements			
Temp C	6.2		
рН	5.79		
Press inHg			
DO Percent	94.4		
DO mg/L	11.69		
Cond (uS/cm)	50		

Macroinvertebrate Metrics			
Total Taxa	25		
Shannon Diversity Index	2.59		
EPT Taxa Richness	10		
Hilsenhoff Biotic Index	3.6		
Intolerant individuals (%)	36.6		
Modified Becks Index	13		
Index of Biotic Integrity	62.6		

Lab Chemistry Analysis			
Total Organic Carbon mg/L	7.93		
Aluminum mg/L	0.186		
Calcium mg/L	1.94		
Iron mg/L	0.214		
Magnesium mg/L	0.718		
Hardness CaCO3	7.79		
Chloride mg/L	10.7		
рН	5.4		
Ammonia as N mg/L	<0.30		
Total Kjeldahl N mg/L	<1.25		
Nitrate as N mg/L	0.182		
Alkalinity to pH 4.5 mg CaCO3/L	<6.0		
Total Dissolved Solids mg/L	53		
Phosphorus as P mg/L	0.02		
Biochemical Oxygen Demand mg/L	<3.00		

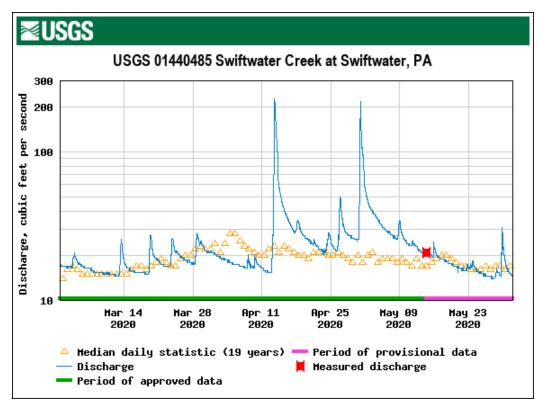
Conclusion

The sites where IBI Scores did not reach the recommended Aquatic Life Use Attainment Benchmarks are shown below:

(2020-18) Keiper Run 02: 33.5 (2020-28) Paradise Creek 09: 58.5 (2020-34) Sambo Creek 02: 47.1 (2020-36) Sand Spring Run 01: 48.8 (2020-37) Sand Spring Run 02: 47.7 (2020-40) Tunkhannock Creek 03: 62.6

<u>Keiper Run 02</u> is a newly designated site that replaced Keiper Run 01. The new site is approximately 1.1 miles downstream from Keiper Run 01 and was moved to assess if the downstream portion of the tributary produced a higher macroinvertebrate count. In previous studies, there was a significant lack of individuals collected at Keiper Run 01 which potentially reflects the intermittent nature of the upstream segment. In 2019, only 16 individuals were collected which is less than the required minimum of 200 (+/-20%) individuals for a reliable sample. During the 2020 study, 213 individuals were collected which is a significant improvement to previous studies. The bulk of the samples at 133 individuals were *Simulium spp.*, commonly named black flies which have a relatively high pollution tolerance therefore, the scoring metrics that are weighted by pollution tolerance values scored low. It will become increasingly important to baseline this sampling location and monitor the metrics to see if an improvement is made.

<u>Paradise Creek 09</u> is a new location for the 2020 study and scored 58.5 in the first year of sampling. The site was sampled on May 4, 2020, which had an above-average discharge rate due to increased precipitation three days before the sampling date. The USGS stream discharge gage measurements are


provided below. Historic aerial imagery and evidence of anthropogenic activity in the stream channel and banks may also be contributing to the low IBI.

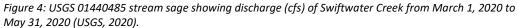

The photograph taken in Figure 3 shows the flow conditions of Paradise Creek 09 during the time of sampling on May 4th, 2020. As seen in the photograph, the high flow channel can be seen on the embankment to the left. Figures 4 and 5 show the two closest stream gages to Paradise Creek from March 1, 2020, to May 31, 2020. Note the high discharge rate approaching the time of sampling and the above-average discharge amount around May 4th.

Figure 3: Photograph taken during the sampling date of Paradise Creek 09 on May 5, 2020

It should be noted that although the high flow could contribute to the low score through macroinvertebrate scouring, this section of Paradise Creek has not been previously sampled. Therefore, a baseline will need to be established to determine if this score is anomalous or if other historical anthropogenic changes have impacted this reach. Additional sampling at this site is recommended to determine trends.

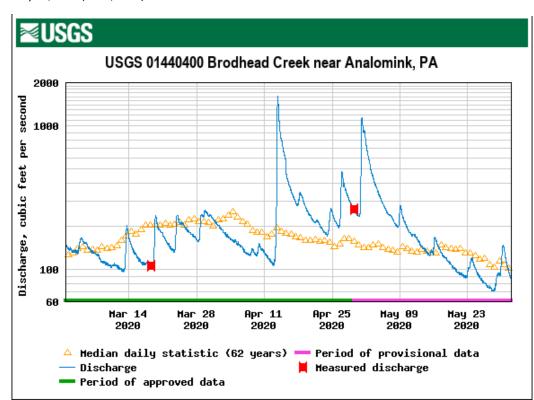


Figure 5: USGS 01440400 stream gage showing discharge (cfs) of Brodhead Creek from March 1, 2020 to May 31, 2020 (USGS, 2020).

<u>Sambo Creek 02</u> also scored low at a 47.1 IBI. Per 25 Pa. Code § 93.9c, the Sambo Creek is designated as a Cold Water Fishery (CWF) which means the additional guidelines were considered while analyzing the IBI. The second guideline provided by Shull & Pulket (2018) in *Assessment Methodology for Rivers and Streams* serves as a check that the sample has substantial richness and abundance of the sensitive organisms and checks if the Beck's Index metric is < 33.3 with the standardized metric score for the Percent Intolerant Individuals < 25.0. In this case, Beck's Index metric is 11 with the standardized metric score for the Percent Intolerant Individuals at 14. This means that the Sambo Creek 02 site did not reach the recommended benchmark for attainment during the study. The data collected coincides with the DEP assessment for the stream which is listed as impaired due to urban runoff and storm sewers (PADEP, 2018). The stream is also included as impaired in the 2020 draft of the *Integrated Water Quality Report – 2020*. Establishing a baseline for the study provides the opportunity to use the data for repair or restoration in the future.

<u>Sand Spring Run 01 and Sand Spring Run 02</u> have continued to score low. The scores are contributed to the failure of the historic Wilkes Barre and Eastern (WB&E) Railroad, passing Sand Spring Run beneath its former embankment. The railroad failure has triggered the ~75 ft. high, sand-dominated embankment to erode and impact water quality. The stream reaches encompassing these two sites was chosen by the Monroe County Conservation District and PADEP as a Growing Greener grant-funded stream restoration project due to significant erosion and sedimentation impacts.

<u>Tunkhannock Creek 03</u> is the last sampling location that scored under the attainment benchmark for the 2020 study however, the sample did not meet the 200 +/- 20% threshold for a reliable sample (Shull & Lookenbill, 2018). The total for the sample consisted of 112 individuals. The graph in Figure 8 could offer a possible explanation for the lack of individuals found during the study. The sample was collected on April 20, 2020, which, as seen in Figure 8, had a higher than average discharge leading up to the collection date. This can have a scouring effect on macroinvertebrates which causes the samples to inaccurately reflect biological conditions (USEPA, 2012).

Additionally, this site in particular encounters the ambiguity between small/large-stream metric standardization highlighted in Shull & Pulket (2018) *Water Quality Monitoring Protocols for Streams and Rivers*. The protocols recommend when decisions diverge it can be especially useful to apply the additional screening questions during the assessment. These four additional questions indicated that the sampling location was attaining its Aquatic Life Use.

- 1. Mayflies, stoneflies, and caddisflies were not absent from the sample.
- 2. The Percent Sensitive individual's standardized score was >25.0.
- 3. The ratio of BCG attribute 1,2,3 taxa to BCG attribute 4,5,6 taxa was > 0.75
- 4. The sub-sample did not show signatures of acidification at the time of sampling.

It should be noted that two sites in the 2019 Water Quality Study, Pocono Creek 09 and Brodhead Creek 27, did not meet their attainment benchmarks. Similar to Tunkhannock Creek 03, it was speculated that the above-average discharge rates of the stream during the time of sampling offered an explanation. In 2020, both sites scored well above their attaining benchmarks.

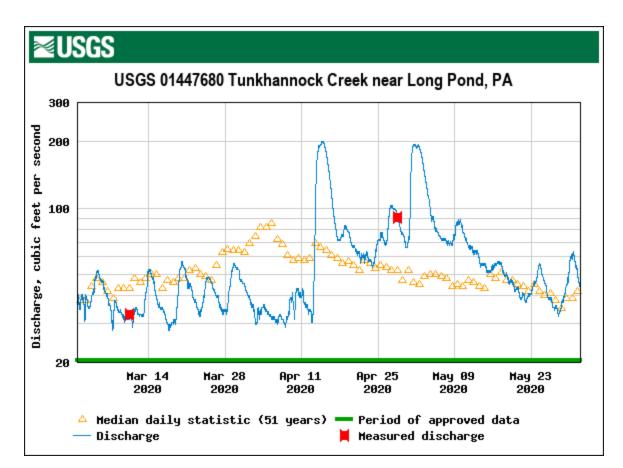


Figure 6: USGS 01447680 stream gage for Tunkhannock Creek from March 1, 2020, to May 31, 2020 (USGS, 2020).

Recommendations

After reviewing the data from the 2020 Water Quality Study, the lead and cooperating agencies recommend the following:

- We plan to ensure consistent trend data for the attaining and Exceptional/High-Quality streams which dominate Monroe County. See below for current trend information.
- Further inspection of the new Keiper Run 02 site to observe any changes to the diversity of macroinvertebrates.
- Increase the amount of time between storm events to allow the stream discharge and macroinvertebrate populations to recover from rain events.
- Further monitoring of Aquashicola, Appenzell, Sambo, Paradise, and Cherry creeks focusing on creating trend data and/or implementing corrective measures for impaired streams or streams that have not attained their Aquatic Life Use benchmark in 2020.

As part of the ongoing trend collection and analysis for sampling sites in Monroe County, the results shown below in Table 6 are sampling locations that have three years of consecutive data.

Site ID	IBI 2015	IBI 2016	IBI 2017	IBI 2018	IBI 2019	IBI 2020
BRODCR22		74.1	87.1	85	87.5	95
BRODCR27			93	99	59.3	97.2
BUCKCR01			73.5	63	76.1	81.9
BUHICR07	89.2	91.3	86.1	83	78.2	93.3
BUSHCR07	86.7	95.3	88.6	91	89.8	81.4
BUTZRN01			76	71	82.8	75.7
CHERCR01				61	66.6	72
INDIRN03				86	69.1	78.1
JONACR01			81.6	78	89.5	79.6
MARSCR11	95.7	89.1	80.5	81	79.7	74.1
MARSCR18			76	71	80.8	92.9
MCMICR10			69.2	69	80.4	87.3
MCMICR22			81.9	96	85.6	92.8
MCMICR37	93.6	76.2	78.6	52	78.5	78.6
MIDDCR04				72	86.6	93.8
MILLCR03		83.2	97	80	89.5	90
PARACR08		85.2	82.5	87	85.9	95.4
POCOCR01			75.9	81	78.2	76.4
POCOCR09			80.2	72	55.7	90.4
POCOCR14	62.3	72.5	82.1	73	74.5	78.5
POHOCR01			88.5	86	93.8	88.9
POHOCR29			83.8	74	75.9	92.8
SWIFCR10	75.8	83.2	90.6	48	77.5	90.3
TOBYCR14	75.8	64.8	88	75	83.9	86.4
TUNKCR03	81.5		67.8	73	78.2	62.6

Table 6: IBI trends from 2015 to 2020.

References

25 Pa. Code § 93.7. Specific water quality criteria.

- Chalfant, B. (2012). A benthic index of biotic integrity for wadeable freestone streams in Pennsylvania.
 Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 21, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water%20and% 20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation /freestonelBImarch 2012.pdf
- Lenntech B.V. (2020). Calcium and water: reaction mechanisms, environmental impacts and health effects. Retrieved October 19, 2020, from https://www.lenntech.com/periodic/water /calcium/calcium-and-water.htm#:~:text=Rivers%20generally%20contain%201%2D2, 1500%20ppm%20(dry%20mass)
- Ohrel, R. L., Register, K. M. (2006, March). Volunteer Estuary Monitoring; A Methods Manual Second Edition. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2015-09/documents/2007_04_09_estuaries_monitoruments_manual.pdf
- PADEP. (2018). Integrated Water Quality Report 2018. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 24, 2020, from https://www.dep.pa. gov/Business/Water/CleanWater/WaterQuality/IntegratedWatersReport/Pages/2018-Integrated-Water-Quality-Report.aspx
- PADEP. (2020, September 22). Existing Use Classification. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 10, 2020, from http://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation /WaterQualityPortalFiles/Existing%20Use/EU%20table%20list.pdf
- Pennsylvania State Extension. (2020). *Marvelous Macroinvertebrates*. Retrieved on October 21, 2020 from https://extension.psu.edu/marvelous-macroinvertebrates
- Shull, D. R., and M. J. Lookenbill (editors). 2018. Water Quality Monitoring Protocols for Streams and Rivers. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 15, 2020, from http://files.dep.state.pa.us/Water/Drinking%20Water% 20and%20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation/MONIT ORING_BOOK.pdf
- Shull, D. R., and M. Pulket (editors). (2018). Assessment Methodology for Rivers and Streams. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 15, 2020, from http://files.dep.state.pa.us/Water/Drinking%20Water%20and% 20Facility%20Regulation/WaterQualityPortalFiles/Methodology/2015%20Methodology /Assessment_Book.pdf

- Stroud Water Research Center. (2020). What Are Benthic Macroinvertebrates? Retrieved on October 21, 2020 from https://stroudcenter.org/macros/
- USEPA. (1976, July). *Quality Criteria for Water*. EPA 440-9-76-023. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov /sites/production/files/2018-10/documents/quality-criteria-water-1976.pdf
- USEPA. (1993, August). *Method 351.2, Revision 2.0: Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry*. Pennsylvania Department of Environmental Protection, Environmental Monitoring Systems Laboratory. Retrieved October 19, 2020, from https://www.epa.gov/sites/production/files/2015-08/documents/method_351-2_1993.pdf
- USEPA. (2012, March 6). *Water: Monitoring and Assessment 4.3 Intensive Stream Biosurvey*. The U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms43.html
- USEPA. (2012, March 6). *Water: Monitoring and Assessment, 5.9 Conductivity*. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms59.html
- USEPA. (2016). A Practitioner's Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. EPA-842-R-16-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 26, 2020, from https://www.epa.gov/sites/production/files/2016-02/documents/bcg-practioners-guidereport.pdf
- USEPA. (2016, August 16). National Aquatic Resource Surveys; Indicators: Conductivity. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/national-aquatic-resource-surveys/indicators-conductivity
- USEPA. (2018, December 3). Causal Analysis/Diagnosis Decision Information System (CADDIS) Vol 2 Sources, Stressors, and Responses. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/caddis-vol2
- USEPA, Office of Water. (1986, May 1). *Quality Criteria for Water*. EPA 440/5-86-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-10/documents/quality-criteria-water-1986.pdf

- USEPA, Office of Water. (1988, February). Ambient Water Quality Criteria For Chloride-1988. EPA 440/5-88-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-08/documents/chloride-aquatic-life-criteria-1988.pdf
- USEPA. Office of Water. (2018, December). *Final Aquatic Life Ambient Water Quality Criteria for Aluminum 2018*. EPA-822-R-18-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/ sites/production/files/2018-12/documents/aluminum-final-national-recommended-awqc.pdf
- USGS, Kramer, Deborah A. (2001). *Magnesium, its Alloys and Compounds*. The U.S. Geological Survey Open-File Report 01-341. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://pubs.usgs.gov/of/2001/of01-341/of01-341.pdf
- USGS. (2020, October 24). National Water Information Systems. U.S. Department of Interior, Washington, DC. Retrieved on October 24, 2020, from https://waterdata.usgs.gov/nwis
- USGS Water Science School. (n.d.). *Hardness of Water*. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://www.usgs.gov/special-topic/water-scienceschool/science/hardness-water?qt-science_center_objects=0#qt-science_center_objects
- Whitehead, Paul. (2020, February 6). *Total Organic Carbon (TOC) and its Measurement*. Retrieved October 20, 2020, from https://www.elgalabwater.com/blog/total-organic-carbon-toc